Protein kinase A inhibits tumor mutator APOBEC3B through phosphorylation
Tadahiko MatsumotoKotaro ShirakawaMasaru YokoyamaHirofumi FukudaAnamaria Daniela SarcaSukenao KoyabuHiroyuki YamazakiYasuhiro KazumaHiroyuki MatsuiW. MaruyamaKayoko NagataFumiko TanabeMasayuki KobayashiKeisuke ShindoRyo MorishitaHironori SatoAkifumi Takaori‐Kondo
21
Citation
73
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract APOBEC3B cytidine deaminase (A3B) catalyzes cytosine into uracil in single-strand DNA and induces C-to-T mutations in genomic DNA of various types of tumors. Accumulation of APOBEC signature mutations is correlated with a worse prognosis for patients with breast cancer or multiple myeloma, suggesting that A3B activity might be a cause of the unfavorable DNA mutations and clonal evolution in these tumors. Phosphorylation of conserved threonine residues of other cytidine deaminases, activation induced deaminase (AID) and APOBEC3G, inhibits their activity. Here we show that protein kinase A (PKA) physically binds to A3B and phosphorylates Thr214. In vitro deaminase assays and foreign DNA editing assays in cells confirm that phosphomimetic A3B mutants, T214D and T214E, completely lose deaminase activity. Molecular dynamics simulation of A3B phosphorylation reveals that Thr214 phosphorylation disrupts binding between the phospho-A3B catalytic core and ssDNA. These mutants still inhibit retroviral infectivity at least partially, and also retain full anti-retrotransposition activity. These results imply that PKA-mediated phosphorylation inhibits A3B mutagenic activity without destructing its innate immune functions. Therefore, PKA activation could reduce further accumulation of mutations in A3B overexpressing tumors.Keywords:
Cytosine deaminase
APOBEC
Activation-induced (cytidine) deaminase
APOBEC3G
Cytidine
The AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme catalytic subunit) family with its multifaceted mode of action emerges as potent intrinsic host antiviral system that acts against a variety of DNA and RNA viruses including coronaviruses. All family members are cytosine-to-uracil deaminases that either have a profound role in driving a strong and specific humoral immune response (AID) or restricting the virus itself by a plethora of mechanisms (APOBECs). In this article, we highlight some of the key aspects apparently linking the AID/APOBECs and SARS-CoV-2. Among those is our discovery that APOBEC4 shows high expression in cell types and anatomical parts targeted by SARS-CoV-2. Additional focus is given by us to the lymphoid structures and AID as the master regulator of germinal center reactions, which result in antibody production by plasma and memory B cells. We propose the dissection of the AID / APOBEC s gene signature towards decisive determinants of the patient-specific and/or the patient group-specific antiviral response. Finally, the patient-specific mapping of the AID/APOBEC polymorphisms should be considered in the light of COVID-19.
APOBEC
APOBEC3G
Activation-induced (cytidine) deaminase
Cytidine
Cite
Citations (13)
Foamy viruses (FVs) are nonpathogenic retroviruses infecting many species of mammals, notably primates, cattle, and cats. We have examined whether members of the apolipoprotein B-editing catalytic polypeptide-like subunit (APOBEC) family of antiviral cytidine deaminases restrict replication of simian FV. We show that human APOBEC3G is a potent inhibitor of FV infectivity in cell culture experiments. This antiviral activity is associated with cytidine editing of the viral genome. Both molecular FV clones and primary uncloned viruses were susceptible to APOBEC3G, and viral infectivity was also inhibited by murine and simian APOBEC3G homologues, as well as by human APOBEC3F. Wild-type and bet-deleted viruses were similarly sensitive to this antiviral activity, suggesting that Bet does not significantly counteract APOBEC proteins. Moreover, we did not detect FV sequences that may have been targeted by APOBEC in naturally infected macaques, but we observed a few G-to-A substitutions in humans that have been accidentally contaminated by simian FV. In infected hosts, the persistence strategy employed by FV might be based on low levels of replication, as well as avoidance of cells expressing large amounts of active cytidine deaminases.
APOBEC
APOBEC3G
Cytidine
Infectivity
Simian immunodeficiency virus
Cite
Citations (137)
APOBEC
Deamination
Cytidine
Cite
Citations (616)
ABSTRACT The human cytidine deaminases APOBEC3G (hA3G) and APOBEC3F (hA3F) are intracellular antiretroviral factors that can hypermutate nascent reverse transcripts and inhibit the replication of human immunodeficiency virus type 1 (HIV-1). Both enzymes have two cytidine deaminase motifs, although only the C-terminal motif is catalytic. Current models of APOBEC protein function imply editing is the principal mechanism of antiviral activity. In particular, hA3G is a more potent inhibitor of HIV-1 infectivity than hA3F and also induces a greater frequency of mutations in HIV-1 cDNA. We used hA3G/hA3F chimeric proteins to investigate whether cytidine deaminase potential reflects antiviral potency. We show here that the origin of the C-terminal deaminase motif is sufficient to determine the degree of mutation induced in a bacterial assay that measures mutations in chromosomal DNA. In contrast, this was not the case in the context of HIV-1 infection where the N-terminal deaminase motif also modulated the editing capabilities of the chimeras. Surprisingly, although three of the chimeric proteins induced levels of mutation that approximated those of parental hA3F, they displayed lower levels of antiviral activity. Most importantly, real-time PCR experiments revealed that the quantity of reverse transcripts detected in target cells, rather than the mutational burden carried by such DNAs, corresponded closely with viral infectivity. In other words, the antiviral phenotype of APOBEC proteins correlates with their ability to prevent the accumulation of reverse transcripts and not with the induction of hypermutation.
APOBEC
APOBEC3G
Cytidine
Activation-induced (cytidine) deaminase
Cite
Citations (287)
The enzymatic deamination of cytosine to uracil, using the free base C, its nucleosides, and nucleotides as substrates, is an essential feature of nucleotide metabolism. However, the deamination of C and, especially, 5 methyl C on DNA is typically detrimental, causing mutations leading to serious human disease. Recently, a family of enzymes has been discovered that catalyzes the conversion of C to U on DNA and RNA, generating favorable mutations that are essential for human survival. Members of the Apobec family of nucleic acid-dependent cytidine deaminases include activation-induced cytidine deaminase (AID) and Apobec3G. AID is required for B cells to undergo somatic hypermutation (SHM) and class switch recombination (CSR), two processes that are needed to produce high-affinity antibodies of all isotypes. Apobec3G is responsible for protection against HIV infection. Recent advances in the biochemical and structural analyses of nucleic acid cytidine deaminases will be discussed in relation to their programmed roles in ensuring antibody diversification and in imposing innate resistance against retroviral infection. The serious negative consequences of expressing Apobec deaminases in the wrong place at the wrong time to catalyze aberrant deamination in "at risk" sequences will be discussed in terms of causing genomic instability and disease.
APOBEC3G
APOBEC
Deamination
Cytidine
Cytosine
Activation-induced (cytidine) deaminase
Cite
Citations (72)
APOBEC3G
APOBEC
Activation-induced (cytidine) deaminase
Deamination
Cytidine
Cite
Citations (105)
APOBEC
APOBEC3G
Cytidine
Cytosine deaminase
Antiviral protein
Cite
Citations (35)
APOBEC3F (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 1-like protein 3F) is a cytidine deaminase that, like APOBEC3G, is able to restrict the replication of HIV-1/delta vif. Initial studies revealed high numbers of mutations in the cDNA of viruses produced in the presence of these proteins, suggesting that cytidine deamination underpinned the inhibition of infection. However, we have recently shown that catalytically inactive APOBEC3G proteins, derived through mutation of the C-terminal cytidine deaminase motif, still exert a substantial antiviral effect. Here, we have generated a panel of APOBEC3F mutant proteins and show that the C-terminal cytidine deaminase motif is essential for catalytic activity and that catalytic activity is not necessary for the antiviral effect of APOBEC3F. Furthermore, we demonstrate that the antiviral activities of wild-type and catalytically inactive APOBEC3F and APOBEC3G proteins correspond well with reductions in the accumulation of viral reverse transcription products. Additional comparisons between APOBEC3F and APOBEC3G suggest that the loss of deaminase activity is more detrimental to APOBEC3G function than to APOBEC3F function, as reflected by perturbations to the suppression of reverse transcript accumulation as well as antiviral activity. Taken together, these data suggest that both APOBEC3F and APOBEC3G are able to function as antiviral factors in the absence of cytidine deamination, that this editing-independent activity is an important aspect of APOBEC protein-mediated antiviral phenotypes, but that APOBEC3F may be a better model in which to study it.
APOBEC3G
Cytidine
Activation-induced (cytidine) deaminase
APOBEC
Deamination
Cytosine deaminase
Cite
Citations (296)
APOBEC
Deamination
Cytidine
APOBEC3G
Activation-induced (cytidine) deaminase
Cytosine
Cytosine deaminase
Cite
Citations (73)
Activation-induced cytidine deaminase (AID) and APOBEC3G catalyze deamination of cytosine to uracil on single-stranded DNA, thereby setting in motion a regulated hypermutagenic process essential for human well-being. However, if regulation fails, havoc ensues. AID plays a central role in the synthesis of high affinity antibodies, and APOBEC3G inactivates human immunodeficiency virus-1. This minireview highlights biochemical and structural properties of AID and APOBEC3G, showing how studies using the purified enzymes provide valuable insight into the considerably more complex biology governing antibody generation and human immunodeficiency virus inactivation.
APOBEC3G
Deamination
Activation-induced (cytidine) deaminase
Cytosine deaminase
Cytidine
Cytosine
Cite
Citations (20)