Genomic characterization of multidrug-resistant ESBL-producing Klebsiella pneumoniae isolated from a Ghanaian teaching hospital
Nicholas AgyepongUsha GovindenAlex Owusu‐OforiDaniel G. AmoakoMushal AllamJessin JaniceTorunn PedersenArnfinn SundsfjordSabiha Y. Essack
37
Citation
41
Reference
10
Related Paper
Citation Trend
Abstract:
ObjectivesThis study delineated the clonal lineages, antibiotic resistome and plasmid replicon types in multidrug-resistant K. pneumoniae isolates from a teaching hospital in Ghana.MethodsIdentification and antibiotic susceptibility testing were done using the MALDI-TOF MS and Vitek-2 automated system. Genomic DNA extraction was carried out using the NucliSens easyMAG® (BioMérieux) kits and the DNA was subjected to whole genome sequencing (WGS) using the Illumina MiSeq platform.ResultsOf the 200 isolates obtained, 37 were identified as K. pneumoniae of which 9 were resistant to all second and third-generation cephalosporins. These 9 isolates selected for further genomic analysis were characterized by the presence of 8 diverse sequence types (STs), capsular polysaccharide serotypes (K types and wzi allelic types) and multiple genes encoding resistance to β-lactams (blaCTX-M-15, blaSHV-11, blaTEM-1B, blaOXA-1), aminoglycosides (aac(3)-IIa, strB, strA, aadA16), fluoroquinolones/quinolones (qnrB66, oqxA, oqxB) and other antibiotic classes. Resistance genes were associated with plasmids, predominantly IncFIB(K) and ColRNAI. Multiple and diverse mutations in quinolone resistance-determining regions of gyrA (S83Y, D87A) and parC (S80I, N304S) in isolates resistant to ciprofloxacin (MIC ≥ 4 mg/mL) were found. Global phylogenomic analysis affirmed the diverse clonal clustering and origin of these isolates.ConclusionsThe varied clonal clusters and resistome identified in the multidrug-resistant K. pneumoniae isolates is a major threat to the management of infections in Ghana. The molecular characterization of antibiotic resistance is thus imperative to inform strategies for containment.Keywords:
Resistome
Quinolone
Multilocus sequence typing
Replicon
Clonal Dissemination of Extended-Spectrum -Lactamase (ESBL)-Producing Klebsiella pneumoniae Isolates in a Korean HospitalIn this study, we investigated the molecular characteristics of extended-spectrum -lactamase (ESBL)-producing Klebsiella pneumoniae isolates that were recovered from an outbreak in a Korean hospital.A new multilocus sequence typing (MLST) scheme for K. pneumoniae based on five housekeeping genes was developed and was evaluated for 43 ESBL-producing isolates from an outbreak as well as 38 surveillance isolates from Korea and also a reference strain.Overall, a total of 37 sequence types (STs) and six clonal complexes (CCs) were identified among the 82 K. pneumoniae isolates.The result of MLST analysis was concordant with that of pulsedfield gel electrophoresis.Most of the outbreak isolates belonged to a certain clone (ST2), and they produced SHV-1 and CTX-M14 enzymes, which was a different feature from that of the K. pneumoniae isolates from other Korean hospitals (ST20 and SHV-12).We also found a different distribution of CCs between ESBL-producing and -nonproducing K. pneumoniae isolates.The MLST method we developed in this study could provide unambiguous and well-resolved data for the epidemiologic study of K. pneumoniae.The outbreak isolates showed different molecular characteristics from the other K. pneumoniae isolates from other Korean hospitals.
Multilocus sequence typing
Housekeeping gene
Molecular Epidemiology
clone (Java method)
Cite
Citations (17)
Abstract The concept of the antibiotic resistome was introduced just over a decade ago, and since then, active resistome studies have been conducted. In the present study, we describe the previously established concept of the resistome, which encompasses all types of antibiotic resistance genes (ARGs), and the important findings from each One-Health sector considering this concept, thereby emphasizing the significance of the One-Health approach in understanding ARG transmission. Cutting-edge research methodologies are essential for deciphering the complex resistome structure in the microbiomes of humans, animals, and the environment. Based on the recent achievements of resistome studies in multiple One-Health sectors, future directions for resistome research have been suggested to improve the understanding and control of ARG transmission: (1) ranking the critical ARGs and their hosts; (2) understanding ARG transmission at the interfaces of One-Health sectors; (3) identifying selective pressures affecting the emergence, transmission, and evolution of ARGs; and (4) elucidating the mechanisms that allow an organism to overcome taxonomic barriers in ARG transmission.
Resistome
Cite
Citations (193)
In vitro activities of colistin and other drugs were tested against 221 Klebsiella pneumoniae isolates that were collected between 2006 and 2007 in nine tertiary care South Korean hospitals from patients with bacteremia. The clonality of colistin-resistant K. pneumoniae (CRKP) isolates was assessed by multilocus sequence typing (MLST). We found that 15 isolates (6.8%) were resistant to colistin. MLST showed that CRKP isolates were nonclonal, with colistin resistance in K. pneumoniae occurring independently and not by clonal spreading.
Multilocus sequence typing
Colistin
Klebsiella infections
Bacteremia
Cite
Citations (70)
The intestinal microbiome forms a major reservoir for antibiotic resistance genes (ARGs). Little is known about the neonatal intestinal resistome.The objective of this study was to investigate the intestinal resistome and factors that influence the abundance of ARGs in a large cohort of neonates.Shotgun metagenomics was used to analyse the resistome in stool samples collected at 1 week of age from 390 healthy, term-born neonates who did not receive antibiotics.Overall, 913 ARGs belonging to 27 classes were identified. The most abundant ARGs were those conferring resistance to tetracyclines, quaternary ammonium compounds, and macrolide-lincosamide-streptogramin-B. Phylogenetic composition was strongly associated with the resistome composition. Other factors that were associated with the abundance of ARGs were delivery mode, gestational age, birth weight, feeding method, and antibiotics in the last trimester of pregnancy. Sex, ethnicity, probiotic use during pregnancy, and intrapartum antibiotics had little effect on the abundance of ARGs.Even in the absence of direct antibiotic exposure, the neonatal intestine harbours a high abundance and a variety of ARGs.
Resistome
Cite
Citations (4)
Purpose of review Fecal microbiome transplants (FMT) show promise in treating various diseases, such as Clostridioides difficile infections. FMT have also demonstrated the capacity to modulate the collection of antibiotic resistance genes (ARGs), termed the resistome, within the gut. The purpose of this review was to critically evaluate the literature regarding the interaction between FMT and the gut resistome and determine whether FMT could be used specifically to reduce ARG carriage in the gut. Recent findings Several studies have demonstrated a decrease in ARG carriage post-FMT administration in various disease states, including recurrent C. difficile infection and after antibiotic usage. However, other studies have reported an expansion of the resistome following FMT. Most studies contained small patient cohorts regardless of the outcome and showed heterogeneity in responses. Summary Research on resistome modulation by FMT is preliminary, and human studies currently lack consensus regarding benefits and risks. From a safety perspective, screening donor samples for ARGs in addition to antibiotic-resistant organisms may be advisable. Additional studies on the mechanisms underlying heterogeneity between studies and individuals are required before FMT is considered an efficient approach for resistome amelioration.
Resistome
Dysbiosis
Gut microbiome
Cite
Citations (2)
Abstract Antimicrobial resistance is a global public health concern, and livestock play a significant role in selecting for resistance and maintaining such reservoirs. Here we study the succession of dairy cattle resistome during early life using metagenomic sequencing, as well as the relationship between resistome, gut microbiota, and diet. In our dataset, the gut of dairy calves serves as a reservoir of 329 antimicrobial resistance genes (ARGs) presumably conferring resistance to 17 classes of antibiotics, and the abundance of ARGs declines gradually during nursing. ARGs appear to co-occur with antibacterial biocide or metal resistance genes. Colostrum is a potential source of ARGs observed in calves at day 2. The dynamic changes in the resistome are likely a result of gut microbiota assembly, which is closely associated with diet transition in dairy calves. Modifications in the resistome may be possible via early-life dietary interventions to reduce overall antimicrobial resistance.
Resistome
Cite
Citations (152)
The emergence and spread of antibiotic resistance have become emerging threats to human health. The human gut is a large reservoir for antibiotic resistance genes. The gut resistome may be influenced by many factors, but the consumption of antibiotics at both individual and country level should be one of the most significant factors. Previous studies have suggested that the gut resistome of different populations may vary, but lack quantitative characterization supported with relatively large datasets. In this study, we filled the gap by analyzing a large gut resistome dataset of 1,267 human gut samples of America, China, Denmark, and Spain. We built a stacking machine-learning model to determine whether the gut resistome can act as the sole feature to identify the nationality of an individual reliably. It turned out that the machine learning method could successfully identify American, Chinese, Danish, and Spanish populations with F1 score of 0.964, 0.987, 0.971, and 0.986, respectively. Our finding does highlight the significant differences in the composition of the gut resistome among different nationalities. Our study should be valuable for policy-makers to look into the influences of country-specific factors of the human gut resistome.
Resistome
Cite
Citations (13)
Mutations in gyrA and parC Genes in Quinolone-Resistant Klebsiella pneumoniae Isolates from Borujerd Hospitals
Quinolone
Klebsiella
Cite
Citations (6)
Abstract The emergence of antibiotic resistance in human pathogens has become a major threat to modern medicine and in particular hospitalized patients. The outcome of antibiotic treatment can be affected by the composition of the gut resistome either by enabling resistance gene acquisition of infecting pathogens or by modulating the collateral effects of antibiotic treatment on the commensal microbiome. Accordingly, knowledge of the gut resistome composition could enable more effective and individualized treatment of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut resistome of an ICU patient. The accuracy of the poreFUME pipeline is >97 % sufficient for the reliable annotation of antibiotic resistance genes. The poreFUME pipeline provides a promising approach for efficient resistome profiling that could inform antibiotic treatment decisions in the future.
Resistome
Cite
Citations (27)
Abstract Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with <10% of the resistance genes found outside the WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting that the overall dissemination of the WWTP resistome is comparable to that of the soil resistome.
Resistome
Horizontal Gene Transfer
Cite
Citations (203)