Seasonal malaria vector and transmission dynamics in western Burkina Faso
Patric Stephane EpopaC. Matilda CollinsAce NorthAbdoul Azize MillogoMark Q. BenedictFrédéric TripetAbdoulaye Diabaté
73
Citation
52
Reference
10
Related Paper
Citation Trend
Abstract:
In the context of widespread mosquito resistance to currently available pesticides, novel, precise genetic vector control methods aimed at population suppression or trait replacement are a potentially powerful approach that could complement existing malaria elimination interventions. Such methods require knowledge of vector population composition, dynamics, behaviour and role in transmission. Here were characterized these parameters in three representative villages, Bana, Pala and Souroukoudingan, of the Sudano-Sahelian belt of Burkina Faso, a region where bed net campaigns have recently intensified.From July 2012 to November 2015, adult mosquitoes were collected monthly using pyrethroid spray catches (PSC) and human landing catches (HLC) in each village. Larval habitat prospections assessed breeding sites abundance at each site. Mosquitoes collected by PSC were identified morphologically, and then by molecular technique to species where required, to reveal the seasonal dynamics of local vectors. Monthly entomological inoculation rates (EIR) that reflect malaria transmission dynamics were estimated by combining the HLC data with mosquito sporozoite infection rates (SIR) identified through ELISA-CSP. Finally, population and EIR fluctuations were fit to locally-collected rainfall data to highlight the strong seasonal determinants of mosquito abundance and malaria transmission in this region.The principal malaria vectors found were in the Anopheles gambiae complex. Mosquito abundance peaked during the rainy season, but there was variation in vector species composition between villages. Mean survey HLC and SIR were similar across villages and ranged from 18 to 48 mosquitoes/person/night and from 3.1 to 6.6% prevalence. The resulting monthly EIRs were extremely high during the rainy season (0.91-2.35 infectious bites/person/day) but decreased substantially in the dry season (0.03-0.22). Vector and malaria transmission dynamics generally tracked seasonal rainfall variations, and the highest mosquito abundances and EIRs occurred in the rainy season. However, despite low residual mosquito populations, mosquitoes infected with malaria parasites remained present in the dry season.These results highlight the important vector control challenge facing countries with high EIR despite the recent campaigns of bed net distribution. As demonstrated in these villages, malaria transmission is sustained for large parts of the year by a very high vector abundance and high sporozoite prevalence, resulting in seasonal patterns of hyper and hypo-endemicity. There is, therefore, an urgent need for additional vector control tools that can target endo and exophillic mosquito populations.Keywords:
Anopheles gambiae
Wet season
Mosquito control
Malaria is the 4(th) largest cause of mortality in Madagascar. To better understand malaria transmission dynamics, it is crucial to map the distribution of the malaria vectors, mosquitoes belonging to the genus Anopheles. To do so, it is important to have a strong Anopheles-specific lure to ensure the maximum number of captures. Previous studies have isolated volatiles from the human skin microbiota and found the compound 3-methyl-1-butanol to be the most attractive to the malaria mosquito, Anopheles gambiae, in a laboratory setting; and recommended 3-methyl-1-butanol as a compound to increase An. gambiae captures in the field. To date, this compound's ability to lure wild mosquitoes in differing land-use settings has not been tested. In this study, we evaluate the role of the synthetic compound, 3-methyl-1-butanol in combination with field produced CO(2) in attracting Anopheles mosquitoes in varying land-use sites in Madagascar.CDC miniature light traps in combination with field produced CO(2) were deployed in and around six villages near Ranomafana National Park, Madagascar. To test the role of 3-methyl-1-butanol in luring Anopheles mosquitoes, two traps were set in each land-use site (village, agricultural sites, and forested habitats affiliated with each village). One was baited with the synthetic odor and the other was kept as a non-baited control.While 3-methyl-1-butanol baited traps did capture An. gambiae s.l. in this study, we did not find traps baited with synthetic 3-methyl-1-butanol to be more successful in capturing Anopheles mosquitoes, (including Anopheles gambiae s.l.) than the non odor-baited control traps in any of the land-use sites examined; however, regardless of odor bait, trapping near livestock pens resulted in the capture of significantly more Anopheles specimens.A strong synthetic lure in combination with insecticide has great potential as a mosquito control. Our findings suggest that trapping mosquitoes near livestock in malaria endemic regions, such as Madagascar, may be more successful at capturing Anopheles mosquitoes than the proposed 3-1-methyl-butanol lure.
Anopheles gambiae
Mosquito control
Entomology
Cite
Citations (14)
The endemicity of malaria in any locality in determine by indigenous Anopheles species composition, distribution as well as Plasmodium infectivity. This research was conducted to determine the species composition and distribution of Anopheles mosquito vectors in Kontagora, Niger State Nigeria. Adult mosquitoes were collected from five (5) sampling sites widely located in Kwangwara, Tudun wada, Dadin kowa, Sabon gari and Usubu areas of Kontagora metropolis. Collected mosquitoes were taken and examined in the laboratory, sorted into Anopheles and identified into species using standard taxonomic keys and Polymerase Chain Reaction (PCR) techniques respectively. Data generated were analysed using the Statistical Package for Social Scientists (SPSS) software version 20.3 and excel package. Anopheles species composition was expressed as the percentage of total Anopheles mosquitoes collected. Chi-square test was used to compare the results from the five sampling locations. The results of the study revealed six (6) Anopheles species; namely An. gambiae, An. funestus, An. squamosus, An. coustani, An. nili and An. maculipalpis, whose distribution varied significantly (p < 0.05) between sampling locations with An. gambiae predominating. Findings therefore revealed the preponderance of Anopheles gambiae species, indicating high malaria transmission potentials in the study area. This underscores the importance of generating intensive spatio-temporal information on the risk factors associated with malaria transmission on a local scale.
Anopheles gambiae
Cite
Citations (0)
Much of our understanding of malaria transmission comes from mosquito feeding assays using Anopheles mosquitoes from colonies that are well adapted to membrane feeding. This raises the question whether results from colony mosquitoes lead to overestimates of outcomes in wild Anopheles mosquitoes. We successfully established an Anopheles colony using progeny of wild Anopheles gambiae s.s. mosquitoes (Busia mosquitoes) and directly compared their susceptibility to infection with Plasmodium falciparum with the widely used An. gambiae s.s. mosquitoes (Kisumu mosquitoes) using gametocyte-infected Ugandan donor blood. The proportion of infectious feeds did not differ between Busia (71.8%, 23/32) and Kisumu (68.8%, 22/32, P = 1.00) mosquitoes. When correcting for random effects of donor blood, we observed a 23% higher proportion of infected Busia mosquitoes than infected Kisumu mosquitoes (RR, 1.23; 95% CI, 1.10-1.38, P < 0.001). This study suggests that feeding assays with Kisumu mosquitoes do not overestimate outcomes in wild An. gambiae s.s. mosquitoes, the mosquito species most relevant to malaria transmission in Uganda.
Anopheles gambiae
Cite
Citations (0)
Abstract Background A better understanding of vector distribution and malaria transmission dynamics at a local scale is essential for implementing and evaluating effectiveness of vector control strategies. Through the data gathered in the framework of a cluster randomized controlled trial (CRT) evaluating the In2Care (Wageningen, Netherlands) Eave Tubes strategy, the distribution of the Anopheles vector, their biting behaviour and malaria transmission dynamics were investigated in Gbêkê region, central Côte d’Ivoire. Methods From May 2017 to April 2019, adult mosquitoes were collected monthly using human landing catches (HLC) in twenty villages in Gbêkê region. Mosquito species wereidentified morphologically. Monthly entomological inoculation rates (EIR) were estimated by combining the HLC data with mosquito sporozoite infection rates measured in a subset of Anopheles vectors using PCR. Finally, biting rate and EIR fluctuations were fit to local rainfall data to investigate the seasonal determinants of mosquito abundance and malaria transmission in this region. Results Overall, Anopheles gambiae , Anopheles funestus , and Anopheles nili were the three vector complexes found infected in the Gbêkê region, but there was a variation in Anopheles vector composition between villages. Anopheles gambiae was the predominant malaria vector responsible for 84.8% of Plasmodium parasite transmission in the area. An unprotected individual living in Gbêkê region received an average of 260 [222–298], 43.5 [35.8–51.29] and 3.02 [1.96–4] infected bites per year from An. gambiae, An. funestus and An. nili , respectively. Vector abundance and malaria transmission dynamics varied significantly between seasons and the highest biting rate and EIRs occurred in the months of heavy rainfall. However, mosquitoes infected with malaria parasites remained present in the dry season, despite the low density of mosquito populations. Conclusion These results demonstrate that the intensity of malaria transmission is extremely high in Gbêkê region, especially during the rainy season. The study highlights the risk factors of transmission that could negatively impact current interventions that target indoor control, as well as the urgent need for additional vector control tools to target the population of malaria vectors in Gbêkê region and reduce the burden of the disease.
Anopheles gambiae
Tropical Medicine
Parasitology
Cite
Citations (11)
This study was carried out between May and October, 2010 to morphologically identify Anopheles species in parts of Kano State. A total of 2374 Anopheles were collected and identified. 1782 (75.07%) were collected from Nassarawa Local Government Area while 592 (24.93%) were collected from Tarauni Local Government Area. Using Anopheles characters of Gilles and Coetzee (1987) under zeiss light microscope, 587 (24.75%) were Anopheles funestus, 1535 (64. 65%) were gambiae s.l. and 252 (10.60%) were An. maculipalpis. Nasssarawa Local Government had the higher of Anopheles identified. Anopheles gambiae s.l. ranked the highest among other species. Further molecular identification of sub-species complex of An. gambiae s.l and An. funestus is strongly recommended in the area.Keywords: Identification, malaria, vectors, anopheles, species.
Anopheles gambiae
Local government area
Identification
Species Identification
State government
Cite
Citations (4)
Members of the Anopheles gambiae complex and Anopheles funestus group are significant vectors of the malaria parasite Plasmodium species in the Afro-tropical region of the world. Molecular identification and variation in the wing were studied among female An. Gambiae complex and An. funestus group, to investigate morphological variations in the wing of local vectors populations of adult female mosquitoes found in five different locations in Akure North Local Government Area of Ondo State (Oba-Ile, Igoba, Isinigbo, Ita-Ogbolu and Iju). The variations in the wing character were found in the 3rd main dark spot area (Pre-apical dark spot-character 8) on the coastal region (Vein region I) of Anopheles gambiae complex wing; with two types (A and B) of wings identified with An. gambiae complex in the study area. Molecular study shows that all the wing type A are Anopheles gambiae s.s., they represent 53.39% of the total An. gambiae complex in the study area. Some of the Anopheles gambiae s.s. (28.30%) and all An. arabiensis (18.30%) were found with wing type B. Among 750 individual Anopheles mosquito species identified using Polymerase Chain Reaction (PCR method), 433 samples representing 57.73% were An. gambiae s.s. while 97 (12.93%) samples were An. arabiensis. Anopheles leesoni was the only member of the An. funestus group identified in the study area. Anopheles leesoni mosquitoes identified in the study location were 182, representing 24.27% of the total Anopheles mosquito species identified using the molecular method. Anopheles gambiae s.s., An. arabiensis, and An. leesoni are only Anopheles mosquito species responsible for malaria transmission in the study area. Anopheles leesoni was the only member of the An. funestus group identified in the study area.
Anopheles gambiae
Local government area
Cite
Citations (5)
There about 460 Anopheles species recognized, over 100 can transmit human malaria but only 30–40 commonly transmit parasites of the genus Plasmodium, which cause malaria. Anopheles gambiae is the principal vector of the most dangerous malaria parasite species in Africa, which is Plasmodium falciparum. Anopheles gambiae are a complex consisting of eight morphologically indistinguishable species and each of the members of the complex having unique biology, ecology and behaviour and should be studied and differentiated. The research objective was to identify the species of malaria vector in Gusau township Nigeria using molecular biological technique to know the exact malaria vector. Knowledge of the exact malaria vector in a given environment enables formulating a carefully designed tailor-made vector control measure. Indoor and outdoor mosquito samples were collected from selected areas in five wards of Gusau township using standard collection methods, for a period of twelve months. The samples were identified using polymerase chain reaction (PCR) technique and the result showed Anopheles gambiae in all sites of sample collection. It is therefore recommended that integrated malaria vector control should be adopted in the mosquito control programme because Anopheles gambiae is rugged and can be difficult to control and/or eradicate because of the emerging insecticide resistance and its close association with human host.
Anopheles gambiae
Cite
Citations (0)
Anopheles gambiae
Plasmodium (life cycle)
Cite
Citations (0)
Accurate Anopheles species identification is key for effective malaria vector control. Identification primarily depends on morphological analysis of field samples as well as molecular species-specific identifications. During an intra-laboratory assessment (proficiency testing) of the Anopheles funestus group multiplex PCR assay, it was noted that Anopheles arabiensis can be misidentified as Anopheles leesoni, a zoophilic member of the An. funestus group. The aim of this project was, therefore, to ascertain whether other members of the Anopheles gambiae complex can also be misidentified as An. leesoni when using the standard An. funestus multiplex PCR.The An. funestus multiplex PCR was used to amplify DNA from An. gambiae complex specimens. These included specimens from the laboratory colonies and field samples from the Democratic Republic of Congo. Amplified DNA from these specimens, using the universal (UV) and An. leesoni species-specific primers (LEES), were sequence analysed. Additionally, An. leesoni DNA was processed through the diagnostic An. gambiae multiplex PCR to determine if this species can be misidentified as a member of the An. gambiae complex.Laboratory-colonized as well as field-collected samples of An. arabiensis, An. gambiae, Anopheles merus, Anopheles quadriannulatus, Anopheles coluzzii as well as Anopheles moucheti produced an amplicon of similar size to that of An. leesoni when using an An. funestus multiplex PCR. Sequence analysis confirmed that the UV and LEES primers amplify a segment of the ITS2 region of members of the An. gambiae complex and An. moucheti. The reverse was not true, i.e. the An. gambiae multiplex PCR does not amplify DNA from An. leesoni.This investigation shows that An. arabiensis, An. gambiae, An. merus, An. quadriannulatus, An. coluzzii and An. moucheti can be misidentified as An. leesoni when using An. funestus multiplex PCR. This shows the importance of identifying specimens using standard morphological dichotomous keys as far as possible prior to the use of appropriate PCR-based identification methods. Should there be doubt concerning field-collected specimens molecularly identified as An. leesoni, the An. gambiae multiplex PCR and sequencing of the internal transcribed spacer 2 (ITS2) can be used to eliminate false identifications.
Anopheles gambiae
Entomology
Parasitology
Tropical Medicine
Cite
Citations (22)
Anopheles gambiae
Cite
Citations (1)