logo
    Lipid bilayer stress and proteotoxic stress-induced unfolded protein response deploy divergent transcriptional and non-transcriptional programmes
    63
    Citation
    146
    Reference
    10
    Related Paper
    Citation Trend
    The endoplasmic reticulum (ER) plays important roles in coordinating protein biosynthesis and secretion in the cell. Accumulation of misfolded and/or unfolded proteins in the ER causes ER stress and the so-called unfolded protein response (UPR). The UPR alleviates ER stress through blocking protein synthesis and activating expression of chaperone genes, whereas prolonged UPR could induce cell death. Recent research has showed that ER stress and UPR are involved in hearing loss. Accordingly, animal experiments showed that chemical chaperones or ER stress inducers alleviate environment-related hearing loss, whereas ER stress inhibitor has been used to treat certain types of hereditary deafness. Further investigations are needed to fully understand the detailed mechanisms of how ER stress contributes to the loss of auditory function, which will help us to eventually develop ER-stress-related treatment of various types of deafness.
    Chemical chaperone
    Chaperone (clinical)
    Citations (2)
    Endoplasmic-reticulum-associated protein degradation
    Homeostasis
    Chaperone (clinical)
    Citations (421)
    ABSTRACT The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteostasis during ER stress using a conformational reporter of the secreted amyloidogenic protein transthyretin (TTR). We show that inhibiting PERK signaling impairs ER stress-dependent secretion of destabilized TTR by increasing its ER retention in chaperone-bound complexes. Interestingly, PERK inhibition promotes the ER stress-dependent secretion of TTR in non-native conformations that accumulate extracellularly as soluble oligomers. Pharmacologic or genetic TTR stabilization partially restores secretion of native TTR tetramers. However, PERK inhibition still increases the ER stress-dependent secretion of TTR in non-native conformations under these conditions, indicating that the conformation of stable secreted proteins can also be affected by inhibiting PERK. Our results define a role for PERK in regulating extracellular proteostasis during ER stress and indicate that genetic or aging-related alterations in PERK signaling can exacerbate ER stress-related imbalances in extracellular proteostasis implicated in diverse diseases.
    Proteostasis
    Secretory protein
    Citations (1)
    Abstract The PERK arm of the unfolded protein response (UPR) regulates cellular proteostasis and survival in response to endoplasmic reticulum (ER) stress. However, the impact of PERK signaling on extracellular proteostasis is poorly understood. We define how PERK signaling influences extracellular proteostasis during ER stress using a conformational reporter of the secreted amyloidogenic protein transthyretin (TTR). We show that inhibiting PERK signaling impairs secretion of destabilized TTR during thapsigargin (Tg)-induced ER stress by increasing its ER retention in chaperone-bound complexes. Interestingly, PERK inhibition increases the ER stress-dependent secretion of TTR in non-native conformations that accumulate extracellularly as soluble oligomers. Pharmacologic or genetic TTR stabilization partially restores secretion of native TTR tetramers. However, PERK inhibition still increases the ER stress-dependent secretion of TTR in non-native conformations under these conditions, indicating that the conformation of stable secreted proteins can also be affected by inhibiting PERK. Our results define a role for PERK in regulating extracellular proteostasis during ER stress and indicate that genetic or aging-related alterations in PERK signaling can exacerbate ER stress-related imbalances in extracellular proteostasis implicated in diverse diseases.
    Proteostasis
    Secretory protein
    Tunicamycin
    Thapsigargin
    Citations (23)
    Proteostasis
    Homeostasis
    Endoplasmic-reticulum-associated protein degradation
    Citations (642)
    The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and dysregulation of proteostasis is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER) is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR), distinct signalling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulphide Isomerase (PDI) is an ER chaperone induced during ER stress that is responsible for the formation of disulphide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.
    Proteostasis
    Chaperone (clinical)
    Citations (145)
    Abstract The endoplasmic reticulum (ER) responds to changes in intracellular homeostasis through activation of the unfolded protein response (UPR). UPR can facilitate the restoration of cellular homeostasis, via the concerted activation of three ER stress sensors, namely IRE1, PERK and ATF6. Global approaches in several cellular contexts have revealed that UPR regulates the expression of many miRNAs that play an important role in the regulation of life and death decisions during UPR. Here we show that expression of miR-424(322)-503 cluster is downregulated during UPR. IRE1 inhibitor (4 μ8C) and deficiency of XBP1 had no effect on downregulation of miR-424(322)-503 during UPR. Treatment of cells with CCT030312, a selective activator of EIF2AK3/PERK signalling, leads to the downregulation of miR-424(322)-503 expression. The repression of miR-424(322)-503 cluster during conditions of ER stress is compromised in PERK-deficient MEFs. miR-424 regulates the expression of ATF6 via a miR-424 binding site in its 3′ UTR and attenuates the ATF6 transcriptional activity during UPR. Further miR-424 had no effect on IRE1-XBP1 axis but enhanced the regulated IRE1-dependent decay (RIDD). Our results suggest that miR-424 constitutes an obligatory fine-tuning mechanism where PERK-mediated downregulation of miR-424(322)-503 cluster regulates optimal activation of IRE1 and ATF6 during conditions of ER stress.
    ATF6
    XBP1
    Citations (38)
    Unfolded protein response (UPR) is an adaptive response, allowing the endoplasmic reticulum (ER) responds to an accumulation of unfolded proteins in its lumen, also known as ER stress. The ER reacts to ER stress through ER transmembrane protein sensors, thus activating intracellular signal transduction pathways. The UPR is interconnected with inflammation through reactive oxygen species production, activation of nuclear factor-kB (NF-kB) and JUN N-terminal kinase (JNK) via inositol-requiring enzyme 1 (IRE1) and induction of acute-phase response. LCN2 is one of the acute phase proteins that are induced under inflammatory conditions and up-regulated during ER stress. We therefore examined the ER stress responses in LCN2-/- condition.
    Citations (0)