logo
    Susceptibility of Croatian maize hybrids to Fusarium ear rot (Fusarium verticillioides) and fumonisin B1 accumulation
    0
    Citation
    0
    Reference
    20
    Related Paper
    This study was conducted to evaluate the production of mycotoxin by Fusarium verticillioides and Fusarium proliferatum strain in culture media. Results of Fusarium strain speciation by sequencing technique for the αTEF gene regent showed that 16 isolates from 21 belong to F. verticelloides, four to F. proliferatum and one to Fusarium solani. Mycotoxin production test showed that all Fusarium strains obtained produce different levels of T2-toxin, DON, ZEN and fumonisin in culture media with fumonisin toxin having the highest chemotype produced.
    Fusarium proliferatum
    Fumonisin
    Beauvericin
    Strain (injury)
    Citations (6)
    Fusarium stalk rot disease (FSR), incited by Fusarium verticilloides, is becoming an important biotic production constraint in many major maize growing areas causing substantial yield losses. The present investigation was conducted to understand the genetics of resistance to FSR through six generation means and variances, as a first step in addressing the problem. Five crosses were developed by crossing four FSR susceptible inbreds (VL1043, VL108867, VL121096 and VL1218) with two resistant inbreds (CM202 and CM212). Six generations of the five crosses (VL1043 × CM212, VL108867 × CM202, VL121096 × CM212, VL1218 × CM202 and VL1218 × CM212) were evaluated through artificial disease inoculation during post rainy season of 2018 and summer, 2019. The scaling tests and joint scaling tests indicated the inadequacy of additive-dominance model and showed the presence of epistatic gene effects in all the five crosses for FSR resistance. The study further revealed the importance of additive, dominance and additive × additive gene effects in the expression of FSR. The magnitude and direction of the additive genetic effects [a], dominance genetic effects [d], magnitudes of additive genetic variance (2A) and dominance genetic variance (2D) varied with the genetic background of the crosses over seasons. Duplicate gene interaction was evident in the inheritance of FSR resistance. Both, additive and non-additive components were found important thus reciprocal recurrent selection would be more effective in obtaining FSR resistant maize inbred lines.
    Epistasis
    Inbred strain
    Additive genetic effects
    Dominance (genetics)
    Stalk
    Smut
    Citations (4)
    Fusarium species coexist as toxigenic, systemic pathogens in sweet corn seed production in southwestern Idaho, USA. We hypothesized that fungal antagonists of seedborne Fusarium would differentially alter production of Fusarium mycotoxins directly and/or systemically. We challenged the Fusarium complex by in vitro antagonism trials and in situ silk and seed inoculations with fungal antagonists. Fungal antagonists reduced growth and sporulation of Fusarium species in vitro from 40.5% to as much as 100%. Pichia membranifaciens and Penicillium griseolum reduced fumonisin production by F. verticillioides by 73% and 49%, respectively, while P. membranifaciens and a novel Penicillium sp. (WPT) reduced fumonisins by F. proliferatum 56% and 78%, respectively. In situ, pre-planting inoculation of seeds with Penicillium WPT systemically increased fumonisins in the resulting crop. Morchella snyderi applied to silks of an F1 cross systemically reduced deoxynivalenol by 47% in mature seeds of the F2. Antagonists failed to suppress Fusarium in mature kernels following silk inoculations, although the ratio of F. verticillioides to total Fusarium double with some inoculants. Fusarium mycotoxin concentrations in sweet corn seed change systemically, as well as locally, in response to the presence of fungal antagonists, although in Fusarium presence in situ was not changed.
    Fumonisin
    Citations (9)
    Abstract Breeding for resistance to Fusarium ear rot (FER; Fusarium verticillioides Nirenberg) and fumonisin (FUM) contamination in maize ( Zea mays L.) is labor intensive, time consuming, and expensive. The objective of this study is to explore three possible shortcuts to improve the efficiency of breeding for resistance to FER and FUM: relying on natural instead of artificial inoculation of Fusarium verticillioides , selecting inbred lines per se instead of topcross hybrids, and using grain test weight (TW) as an indirect selection criterion. We selected the 27 most resistant and 26 most susceptible S 0:1 lines from the third cycle of a broad‐based recurrent selection population and topcrossed them to a common inbred line. The resulting topcross hybrids were evaluated in three North Carolina environments under artificial and natural inoculation of F. verticillioides . The entry‐mean heritabilities for FER and FUM are considerably reduced under natural conditions compared to artificial inoculation; therefore, artificial inoculation should be practiced for efficient selection for resistance. We found a high correlation between FER and FUM content of S 0:1 lines per se and their topcross hybrids, suggesting that selection among early generation inbred lines per se is an efficient method to improve resistance in their topcross hybrids. The TW of inoculated S 0:1 lines per se was strongly and negatively correlated with FER and FUM of their topcross hybrids, suggesting that TW can be utilized as an indirect selection criterion to improve resistance to FER and FUM contamination.
    Fumonisin
    Inbred strain
    Citations (8)
    Maize is mainly affected by two fungal pathogens, Fusarium verticillioides and Aspergillus flavus , causing Fusarium ear rot (FER) and Aspergillus ear rot (AER), respectively. Both fungi are of concern to stakeholders as they affect crop yield and quality, contaminating maize grains with the mycotoxins fumonisins and aflatoxins. The easiest strategy to prevent pre-harvest contamination by F. verticillioides and A. flavus is to develop maize hybrids resistant to FER and AER, as well as to their associated mycotoxins. The objective of this investigation was to test 46 F 1 hybrids, originated from different Italian, US and Canadian breeding groups, for these important traits and their agronomic performances. All hybrids were planted and artificially inoculated with toxigenic strains of F. verticillioides and A. flavus at two locations in 2017, and the best performing 17 out of 46 were also tested in 2018. Ear rots were present in all hybrids in 2017 and 2018, with percentages ranging from 6.50 to 49.50%, and 5.50 to 45.53%, for FER and AER, respectively. Seven hybrids (PC8, PC15, PC9, PC11, PC14, PC34 and PC17) presented the lowest levels of both diseases considering the overall locations and growing seasons, and three of these (PC8, PC11 and PC14) were also amongst the least mycotoxin contaminated hybrids in 2017. The inbred lines used in hybrid production may provide additional sources of resistance suitable in breeding programs targeting multiple pathogens and their mycotoxins.
    Citations (11)
    Abstract F usarium species belonging to the F usarium fujikuroi species complex ( FFSC ) are associated with maize in northern Mexico and cause F usarium ear and root rot. In order to assess the diversity of FFSC fungal species involved in this destructive disease in Sinaloa, Mexico, a collection of 108 fungal isolates was obtained from maize plants in 2007–2011. DNA sequence analysis of the calmodulin and elongation factor 1α genes identified four species: Fusarium verticillioides , F. nygamai , F. andiyazi and F. thapsinum (comprising 79, 23, 4 and 2 isolates, respectively). Differential distribution of F usarium species in maize organs was observed, that is F. verticillioides was the most frequently isolated species from maize seeds, while F. nygamai predominated on maize roots. Mixed infections with F. verticillioides/F. thapsinum and F. verticillioides/F. nygamai were detected in maize seeds and roots, respectively. Pathogenicity assay demonstrated the ability of the four species to infect maize seedlings and induce different levels of disease severity, reflecting variation in aggressiveness, plant height and root biomass. Isolates of F. verticillioides and F. nygamai were the most aggressive. These species were able to colonize all root tissues, from the epidermis to the vascular vessels, while infection by F. andiyazi and F. thapsinum was restricted to the epidermis and adjacent cortical cells. This is the first report of F. nygamai , F. andiyazi and F. thapsinum infecting maize in Mexico and co‐infecting with F. verticillioides . Mixed infections should be taken into consideration due to the production and/or accumulation of diverse mycotoxins in maize grain.
    Species complex
    Epidermis (zoology)
    Citations (51)
    Fumonisins have been associated with potentially serious toxicoses of animals and humans. Prior to initiating a corn (Zea mays) breeding program for resistance to these mycotoxins, an efficient inoculation technique must be developed. Four inoculation techniques were evaluated on 14 commercial corn hybrids in Urbana, IL in 1999 and 2000. The techniques were: injection of inoculum through the ear husk leaves at R2 (blister); silks sprayed with inoculum at R2 and covered with a shoot bag until harvest; silks sprayed with inoculum at R2, covered with a shoot bag, reinoculated 1 week thereafter, and covered with a shoot bag until harvest; and insertion of six Fusarium-colonized toothpicks into the silk channel at R2. Only injection of inoculum through the husk leaves significantly increased the concentration of fumonisin in grain and severity of Fusarium ear rot compared with a control. This technique effectively differentiated hybrids previously identified as resistant or susceptible to Fusarium ear rot. The rank order of hybrids inoculated with this technique did not significantly change in the 2 years of this study. This technique is suitable for efficiently evaluating a large number of corn genotypes for resistance to Fusarium ear rot and fumonisin concentration.
    Fumonisin
    Husk
    Citations (103)