logo
    miR403a and SA Are Involved in NbAGO2 Mediated Antiviral Defenses Against TMV Infection in Nicotiana benthamiana
    34
    Citation
    83
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    RNAi (RNA interference) is an important defense response against virus infection in plants. The core machinery of the RNAi pathway in plants include DCL (Dicer Like), AGO (Argonaute) and RdRp (RNA dependent RNA polymerase). Although involvement of these RNAi components in virus infection responses was demonstrated in Arabidopsis thaliana, their contribution to antiviral immunity in Nicotiana benthamiana, a model plant for plant-pathogen interaction studies, is not well understood. In this study, we investigated the role of N. benthamiana NbAGO2 gene against TMV (Tomato mosaic virus) infection. Silencing of NbAGO2 by transient expression of an hpRNA construct recovered GFP (Green fluorescent protein) expression in GFP-silenced plant, demonstrating that NbAGO2 participated in RNAi process in N. benthamiana. Expression of NbAGO2 was transcriptionally induced by both MeSA (Methylsalicylate acid) treatment and TMV infection. Down-regulation of NbAGO2 gene by amiR-NbAGO2 transient expression compromised plant resistance against TMV infection. Inhibition of endogenous miR403a, a predicted regulatory microRNA of NbAGO2, reduced TMV infection. Our study provides evidence for the antiviral role of NbAGO2 against a Tobamovirus family virus TMV in N. benthamiana, and SA (Salicylic acid) mediates this by induction of NbAGO2 expression upon TMV infection. Our data also highlighted that miR403a was involved in TMV defense by regulation of target NbAGO2 gene in N. Benthamiana.
    Keywords:
    Tobamovirus
    Plant viruses move systemically from one leaf to another via phloem. However, the viral functions needed for systemic movement are not fully elucidated. An experimental system was designed to study the effects of low temperature on the vascular transport of the tobacco mosaic tobamovirus (TMV). Vascular transport of TMV from lower inoculated leaves to upper non-inoculated leaves via a stem segment kept at low temperature (4 degrees C) was not affected. On the other hand, several experiments were performed on tobacco leaves to demonstrate that virus replication did not occur at the same temperature. The data suggest that replication of TMV in the phloem of wild-type tobacco plants is not necessary for the vascular transport of TMV, and that the virus moves with photoassimilates as suggested previously.
    Tobamovirus
    Plasmodesma
    Vascular tissue
    Mosaic virus
    Reversibly glycosylated polypeptides (RGPs) have been identified in many plant species and play an important role in cell wall formation, intercellular transport regulation, and plant–virus interactions. Most plants have several RGP genes with different expression patterns depending on the organ and developmental stage. Here, we report on four members of the RGP family in N. benthamiana. Based on a homology search, NbRGP1-3 and NbRGP5 were assigned to the class 1 and class 2 RGPs, respectively. We demonstrated that NbRGP1–3 and 5 mRNA accumulation increases significantly in response to tobacco mosaic virus (TMV) infection. Moreover, all identified class 1 NbRGPs (as distinct from NbRGP5) suppress TMV intercellular transport and replication in N. benthamiana. Elevated expression of NbRGP1–2 led to the stimulation of callose deposition at plasmodesmata, indicating that RGP-mediated TMV local spread could be affected via a callose-dependent mechanism. It was also demonstrated that NbRGP1 interacts with TMV movement protein (MP) in vitro and in vivo. Therefore, class 1 NbRGP1–2 play an antiviral role by impeding intercellular transport of the virus by affecting plasmodesmata callose and directly interacting with TMV MP, resulting in the reduced viral spread and replication.
    Plasmodesma
    Callose
    Tobamovirus
    Citations (5)