logo
    (345) The Neuropeptide TLQP-62 Induces Calcium Transients in Primary Afferent Neurons
    0
    Citation
    0
    Reference
    10
    Related Paper
    Keywords:
    Capsaicin
    Calcium imaging
    Dorsal root ganglion
    Serum immunoreactive parathyroid hormone (IPTH) was measured in control and in alloxan-induced diabetic rats ingesting a normal calcium diet and in control rats ingesting a low calcium diet. Serum IPTH levels in controls ingesting the low calcium diet were three times those of controls on the normal calcium diet. Serum IPTH in diabetic rats was double that in controls. Therefore,the diabetic rat manifests an appropriate parathyroid response to diminished calcium absorption. The deficiency of duodenal calcium binding protein and the duodenal calcium malabsorption previously observed in diabetic rats are not the result of a defect in PTH regulation of vitamin D metabolism. (En-docrinology95: 749, 1974)
    Alloxan
    Citations (19)
    Abstract Recent studies provide evidence that the GH/IGF-I axis plays a critical role in the regulation of bone accretion that occurs during puberty and that the peak bone mineral density (BMD) is dependent on the amount of dietary calcium intake during the active growth phases. To evaluate whether IGF-I deficiency exaggerates the effect of calcium deficiency on bone accretion during active growth phases, IGF-I knockout (KO) and wild-type (WT) mice were fed with low calcium (0.01%) or normal calcium (0.6%) for 2 wk during the pubertal growth phase and were labeled with tetracycline. The low calcium diet caused significant decreases in endosteal bone formation parameters and a much greater increase in the resorbing surface of both the endosteum and periosteum of the tibia of IGF-I KO mice compared with WT mice. Accordingly, femur BMD measured by dual energy x-ray absorptiometry or peripheral quantitative computed tomography increased significantly in IGF-I WT mice fed the low calcium diet, but not in IGF-I KO mice. IGF-I-deficient mice fed the normal calcium diet showed elevated PTH levels, decreased serum 1,25-dihydroxyvitamin D and serum calcium levels at baseline. Serum calcium changes due to calcium deficiency were greater in IGF-I KO mice compared with WT mice. PTH levels were 7-fold higher in IGF-I KO mice fed normal calcium compared with WT mice, which was further elevated in mice fed the low calcium diet. Treatment of IGF-I-deficient lit/lit mice with GH decreased the serum PTH level by 70% (P < 0.01). Based on these and past findings, we conclude that: 1) IGF-I deficiency exaggerates the negative effects of calcium deficiency on bone accretion; and 2) IGF-I deficiency may lead to 1,25-dihydroxyvitamin D deficiency and elevated PTH levels even under normal calcium diet.
    Citations (39)
    We investigated the effect of centrally administered pituitary adenylate cyclase activating polypeptide (PACAP) on feeding in rats, and the involvement of hypothalamic neuropeptide gene expression using in situ hybridization. lntracerebroventricular injection of PACAP (1000 pmol/rat) significantly decreased food intake in a dose‐dependent manner. In PACAP‐treated rats, neuropeptide Y (NPY) mRNA levels in the arcuate nucleus and galanin mRNA levels in the paraventricular nucleus increased, and corticotropin‐releasing hormone (CRH) mRNA levels in the paraventricular nucleus decreased. In rats fasted for 72 h, NPY mRNA levels increased, and CRH mRNA levels decreased, but galanin mRNA levels were unchanged. These results indicate that the anorectic function of PACAP is not mediated by NPY or CRH, and that PACAP increases galanin synthesis.
    Anorectic
    Corticotropin-releasing hormone
    Ghrelin, the endogenous ligand of the GH secretagogue receptor, acts at central level to elicit GH release and regulate food intake. To elucidate the neural circuit that exerts its effects, we measured the expression of hypothalamic neuropeptides involved in weight regulation and GH secretion after ghrelin administration. Adult male rats, fed or fasted for 72 h, were treated centrally (intracerebroventicularly) with a single dose of ghrelin (5 micro g). After 2, 4, and 6 or 8 h, agouti-related peptide, melanin-concentrating hormone, neuropeptide Y, prepro-orexin, GHRH, and somatostatin mRNA levels were measured by in situ hybridization. We found that ghrelin increased agouti-related peptide and neuropeptide Y expression in the arcuate nucleus of the hypothalamus of fed and fasted rats. In contrast, no change was demonstrated in the mRNA levels of the other neuropeptides studied at any time evaluated. Finally, we examined the effect of ghrelin on GHRH and somatostatin mRNA levels in GH-deficient (dwarf) rats. Our results show that ghrelin increases somatostatin mRNA levels in the hypothalamus of these rats. This study furthers our understanding of the molecular basis and mechanisms involved in the effect of ghrelin on food intake and GH secretion.
    Secretagogue
    Melanin-concentrating hormone
    Citations (229)
    The induction of long-term potentiation (LTP) within the dentate gyrus of the hippocampal formation is modulated by many afferent influences from a number of subcortical structures known to be intimately involved in hippocampal-dependent learning and memory. It has been demonstrated in slice and anesthetized preparations that norepinephrine (NE) is one of these major neuromodulators involved in the induction of LTP. However, the majority of these studies have not been conducted in the freely moving animal. Recently, we developed surgical procedures and instrumentation techniques to simultaneously record electrophysiological and neurochemical data from the hippocampal formation. The present study uses these techniques to examine the underlying neurochemical changes in the hippocampus associated with the induction of hippocampal dentate LTP in the freely moving adult rat. These findings establish baseline levels of NE that can be used to evaluate the impact of various tetanization paradigms as well as the effect of a variety of insults on hippocampal plasticity. Hippocampus 2001;11:423–429. © 2001 Wiley-Liss, Inc.
    Neurochemical
    Perforant Pathway
    LTP induction
    Entorhinal cortex
    Citations (0)
    The hippocampal synapses display conspicuous ability for long-term plasticity which is thought to underlie learning and memory. Growing evidence shows that this ability differs along the long axis of the hippocampus, with the ventral CA1 hippocampal synapses displaying remarkably lower ability for long-term potentiation (LTP) compared with their dorsal counterpart when activated with high-frequency stimulation. Here, we show that low frequency, 10 Hz stimulation induced LTP more reliably in dorsal than in ventral CA1 field. Blockade of alpha5 subunit-containing GABAA receptors eliminated the difference between dorsal and ventral hippocampus. We propose that α5GABAA receptor-mediated activity plays a crucial role in regulating the threshold for induction of LTP especially at the ventral CA1 hippocampal synapses. This might have important implications for the functional specialization along the hippocampus.
    LTP induction
    Citations (14)
    Calcium ionophore A23187 (20 μM) evoked the secretion of somatostatin (SRIF) as well as insulin from isolated rat pancreatic islets in a medium containing a relatively low concentration of calcium (0.9 HIM) and a low concentration of glucose (5.5 mM). A high level of extracellular calcium (7.5 mM) also had a stimulatory effect on SRIF and insulin release. On the other hand, in the presence of high glucose (16.7 mM), A23187 had different effects on D and B cells; insulin release was markedly suppressed by A23187, but SRIF secretion was significantly enhanced. A high concentration of glucose (16.7 mM) did not stimulate SRIF secretion at a low extracellular calcium concentration (0.25 mM), at which level insulin release is significantly enhanced. These findings indicate that calcium may play an important role in the regulation of the secretion of SRIF as well as insulin and suggest that the B and D cells differ in their sensitivity to the calcium ion.
    Pancreatic Islets
    Citations (13)
    Biochemical mapping of five different peptide-like materials--calcitonin gene-related peptide (CGRP), substance P (SP), Met5-enkephalin (ME), cholecystokinin (CCK), and dynorphin A (1-8) (DYN)--was conducted in the dorsal and ventral zones of the spinal cord at the cervical, thoracic, and lumbar levels in 3-month-old rats 10 days after unilateral dorsal rhizotomy at the cervical level (C4-T2) or after neonatal administration of capsaicin (50 mg/kg s.c.). In control rats, all peptide-like materials were more abundant in the dorsal than in the ventral zone all along the spinal cord. However, in both zones, absolute concentrations of CGRP, SP, ME, and CCK were significantly higher at the lumbar than at the cervical level. Rhizotomy-induced CGRP depletion (-85%) within the ipsilateral dorsal zone of the cervical cord was more pronounced than that due to neonatal capsaicin (-60%), a finding suggesting that this peptide is contained in both capsaicin-sensitive (mostly unmyelinated) and -insensitive (myelinated) primary afferent fibers. In contrast, similar depletions of SP (-50%) were observed after dorsal rhizotomy and neonatal capsaicin treatment, as expected from the presence of SP only in the capsaicin-sensitive small-diameter primary afferent fibers. Although the other three peptides remained unaffected all along the cord by either intervention, evidence for the existence of capsaicin-insensitive CCKergic primary afferent fibers could be inferred from the increased accumulation of CCK (together with SP and CGRP) in dorsal root ganglia ipsilateral to dorsal root sections.
    Capsaicin
    Rhizotomy
    Dynorphin
    Dorsal root ganglion
    Dynorphin A
    Objective : It has earlier been demonstrated that capsaicin-induced desensitization improves insulin sensitivity in normal rats. However, whether increased capsaicin-sensitive nerve activity precedes the onset of insulin resistance in diet-induced obesity – and therefore might be involved in the pathophysiology – is not known. Further, it is of relevance to investigate whether capsaicin desensitization improves glycaemic control even in obese individuals and we therefore chose the obese Zucker rats to test this. Design and methods : Plasma levels of calcitonin gene-related peptide (CGRP; a marker of sensory nerve activity) was assessed in 8-week-old Zucker rats. To investigate whether capsaicin desensitization (100 mg/kg at 9 weeks of age) would also ameliorate glycaemia in this non-diabetic model, we assessed oral glucose tolerance at 7 weeks after capsaicin. Results : It was found that plasma CGRP levels were elevated in obese Zucker rats prior to the onset of obesity (16.1±3.4 pmol/l in pre-obese Zucker rats vs 6.9±1.1 pmol/l in lean littermates; P = 0.015) despite similar body weights. Furthermore, capsaicin desensitization reduced both fasting blood glucose (4.3±0.2 mmol/l vs 5.1±0.2 mmol/l in controls; P = 0.050) as well as the mean blood glucose level during an oral glucose tolerance test (OGTT) (6.8±0.3 mmol/l vs 8.6±0.5 mmol/l in control obese rats; P = 0.024) whereas the plasma insulin levels during the OGTT were unchanged. However this did not lead to an improvement in insulin resistance or to a reduction of tissue triglyceride accumulation in muscle or liver. Conclusion : We concluded that capsaicin-induced sensory nerve desensitization improves glucose tolerance in Zucker rats. Since, in this study, plasma CGRP levels, a marker of sensory nerve activity, were increased in the pre-obese rats, our data support the hypothesis that increased activity of sensory nerves precedes the development of obesity and insulin resistance in Zucker rats.
    Capsaicin
    Hyperinsulinemia
    Sensory nerve
    Glucose tolerance test
    Citations (98)
    The nationally-recognized Susquehanna Chorale will delight audiences of all ages with a diverse mix of classic and contemporary pieces. The ChoraleAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚™s performances have been described as AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚œemotionally unfiltered, honest music making, successful in their aim to make the audience feel, to be moved, to be part of the performance - and all this while working at an extremely high musical level.AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ Experience choral singing that will take you to new heights!
    Citations (0)