logo
    Abstract:
    Drug delivery to the brain represents a challenge, especially in the therapy of central nervous system malignancies. Simvastatin (SVT), as with other statins, has shown potential anticancer properties that are difficult to exploit in the central nervous system (CNS). In the present work the physico–chemical, mucoadhesive, and permeability-enhancing properties of simvastatin-loaded poly-ε-caprolactone nanocapsules coated with chitosan for nose-to-brain administration were investigated. Lipid-core nanocapsules coated with chitosan (LNCchit) of different molecular weight (MW) were prepared by a novel one-pot technique, and characterized for particle size, surface charge, particle number density, morphology, drug encapsulation efficiency, interaction between surface nanocapsules with mucin, drug release, and permeability across two nasal mucosa models. Results show that all formulations presented adequate particle sizes (below 220 nm), positive surface charge, narrow droplet size distribution (PDI < 0.2), and high encapsulation efficiency. Nanocapsules presented controlled drug release and mucoadhesive properties that are dependent on the MW of the coating chitosan. The results of permeation across the RPMI 2650 human nasal cell line evidenced that LNCchit increased the permeation of SVT. In particular, the amount of SVT that permeated after 4 hr for nanocapsules coated with low-MW chitosan, high-MW chitosan, and control SVT was 13.9 ± 0.8 μg, 9.2 ± 1.2 µg, and 1.4 ± 0.2 µg, respectively. These results were confirmed by SVT ex vivo permeation across rabbit nasal mucosa. This study highlighted the suitability of LNCchit as a promising strategy for the administration of simvastatin for a nose-to-brain approach for the therapy of brain tumors.
    Keywords:
    Nanocapsules
    Mucoadhesion
    Surface charge
    Nanocarriers
    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.
    Niosome
    Targeted drug delivery
    Citations (412)
    Brain drug delivery is severely hindered by the presence of the blood-brain barrier (BBB). Its functionality relies on the interactions of the brain endothelial cells with additional cellular constituents, including pericytes, astrocytes, neurons, or microglia. To boost brain drug delivery, nanomedicines have been designed to exploit distinct delivery strategies, including magnetically driven nanocarriers as a form of external physical targeting to the BBB. Herein, a lipid-based magnetic nanocarrier prepared by a low-energy method is first described. Magnetic nanocapsules with a hydrodynamic diameter of 256.7 ± 8.5 nm (polydispersity index: 0.089 ± 0.034) and a ξ-potential of -30.4 ± 0.3 mV were obtained. Transmission electron microscopy-energy dispersive X-ray spectroscopy analysis revealed efficient encapsulation of iron oxide nanoparticles within the oily core of the nanocapsules. Both thermogravimetric analysis and phenanthroline-based colorimetric assay showed that the iron oxide percentage in the final formulation was 12 wt.%, in agreement with vibrating sample magnetometry analysis, as the specific saturation magnetization of the magnetic nanocapsules was 12% that of the bare iron oxide nanoparticles. Magnetic nanocapsules were non-toxic in the range of 50-300 μg/mL over 72 h against both the human cerebral endothelial hCMEC/D3 and Human Brain Vascular Pericytes cell lines. Interestingly, higher uptake of magnetic nanocapsules in both cell types was evidenced in the presence of an external magnetic field than in the absence of it after 24 h. This increase in nanocapsules uptake was also evidenced in pericytes after only 3 h. Altogether, these results highlight the potential for magnetic targeting to the BBB of our formulation.
    Nanocapsules
    Nanocarriers
    Iron oxide nanoparticles
    Dispersity
    Targeted drug delivery
    Delivery of drugs to the brain is still a major challenge. Successful delivery across the bloodbrain barrier has only been achieved in some cases, e.g., using pro-drugs. The review describes the delivery to the brain using nanoparticulate drug carriers in combination with the novel targeting principle of "differential protein adsorption" (PathFinder technology). The PathFinder technology exploits proteins in the blood which adsorb onto the surface of intravenously injected carriers for targeting. Apolipoprotein E is the targeting moiety for the delivery of particles to the endothelials of the blood-brain barrier. To reach therapeutic drug level in the brain, nanoparticulate drug carriers with sufficiently high loading capacity are reviewed, including drug nanocrystals (nanosuspensions), lipid drug conjugate (LDC) nanoparticles and lipid nanoparticles (solid lipid nanoparticles-SLN, nanostructured lipid carriers-NLC). The features are described, including regulatory aspects and large scale production.
    Conjugate
    Solid lipid nanoparticle
    Targeted drug delivery
    Citations (114)
    Introduction: Current therapies of neurodegenerative or neurometabolic diseases are, to a large extent, hampered by the inability of drugs to cross the blood-brain barrier (BBB). This very tight barrier severely restricts the entrance of molecules from the blood into the brain, especially macromolecular substances (i.e. neurotrophic factors, enzymes, proteins, as well as genetic materials). Due to their size, physicochemical properties, and instability, the delivery of these materials is particularly difficult.Areas covered: Recent research showed that biocompatible and biodegradable nanoparticles possessing tailored surface properties can enable a delivery of drugs and specifically of macromolecules across the blood-brain barrier by using carrier systems of the brain capillary endothelium (Trojan Horse strategy). In the present review, the state-of-art of nanoparticle-mediated drug delivery of different macromolecular substances into the brain following intravenous injection is summarized, and different nanomedicines that are used to enable the transport of neurotrophic factors and enzymes across the blood-brain barrier into the CNS are critically analyzed.Expert opinion: Brain delivery of macromolecules by an intravenous application using nanomedicines is now a growing area of interest which could be really translated into clinical application if dedicated effort will be given to industrial scale-up production.
    Biocompatible material
    Drug delivery to the brain represents a challenge especially in the therapy of central nervous system malignancies. Simvastatin (SVT), as other statins, has shown potential anticancer properties that are difficult to exploit in the CNS. In the present work the physico-chemical, mucoadhesive and permeability enhancing properties of simvastatin-loaded poly-&epsilon;-caprolactone nanocapsules coated with chitosan for nose-to-brain administration were investigated. Lipid-core nanocapsules coated with different molecular weight (MW) chitosans (LNCchit) prepared by a novel one-pot technique were characterized for particle size, surface charge, particle number density, morphology, drug encapsulation efficiency, interaction between surface nanocapsules with mucin, drug release and permeability across two nasal mucosa models. Results show that all formulations present adequate particle size (below 220 nm), positive surface charge, narrow droplet size distribution (PDI&lt;0.2) and high encapsulation efficiency. Nanocapsules presented controlled drug release and mucoadhesive properties dependent on the MW of the coating chitosan. The results of permeation across RPMI 2650 human nasal cell line evidenced that LNCchit increased the permeation of SVT. In particular, the amount of SVT permeated after 4h for nanocapsules coated with low MW chitosan, high MW chitosan and control SVT was 13.91 &plusmn; 0.78 &micro;g, 9.15 &plusmn; 1.23 &micro;g and 1.42 &plusmn; 0.21 &micro;g respectively. These results were confirmed by the SVT ex vivo permeation across rabbit nasal mucosa. This study highlighted the suitability of LNCchit as promising strategy for the administration of simvastatin for a nose-to-brain approach for the therapy of brain tumors.
    Nanocapsules
    Mucoadhesion
    Surface charge
    Nanocarriers
    Carrier technology offers a promising approach for drug delivery system by coupling the drug to a carrier particle such as microspheres,nanoparticles, niosomes, liposomes etc. which modulates the release characteristics of the drug. Mucoadhesion had been a topic of interest in the design of novel drug delivery system to extend the residence time of the dosage form at the site of application or absorption and improve an intimate contact with the underlying absorption surface and enhance the bioavail ability or therapeutic performance of drugs. Mucoadhesive microspheres delivery system is an attractive concept, in which the drug can be entrapped inside the carrier to be released at the mucosal surface where the carriers are adhered due to their mucoadhesiveness. Nowadays mucoadhesive microspheres have been also developed for oral, buccal, ocular, nasal, vaginal and rectal routes for either systemic or local effects. The aim of this article is review the principles underlying the formulation and evaluation of mucoadhesive microspheres.
    Mucoadhesion
    Niosome
    Citations (0)
    ส้มโอ (Citrus grandis�L. Osbeck) เป็นผลไม้ประเภท citrus ด้วยความคล้ายคลึงกันทางพฤกษศาสตร์กับเกรปฟรุต (Citrus paradisi) ที่มีรายงานว่าก่อให้เกิดการรบกวนเภสัชจลนศาสตร์ของยาหลายชนิดรวมถึงยา simvastatin ที่ใช้รักษาโรคภาวะไขมันในเลือดสูงแต่มีผลข้างเคียงที่เป็นอันตรายได้โดยเฉพาะต่อกล้ามเนื้อ งานวิจัยนี้จึงศึกษาผลของน้ำส้มโอต่อเภสัชจลนศาสตร์ของยา simvastatin และผลต่อการทำงานของเอนไซม์ไซโทโครมพี3a2 (CYP3a2) และการแสดงออกของเอ็มอาร์เอ็นเอ�Mdr1a,��Mdr1b�และ�Slc21a5�ในหนูแรทเพศผู้ โดยแบ่งหนูแรทออกเป็น 4 กลุ่มคือ กลุ่มควบคุม กลุ่มที่ได้รับน้ำส้มโอ (2ml/kg) เท่านั้นวันละ 2 ครั้งเป็นเวลา 7 วัน กลุ่มที่ได้รับยา simvastatin เท่านั้น (ขนาดยา 20 mg/kg) �และกลุ่มที่ได้น้ำส้มโอ (2ml/kg) วันละ 2 ครั้งเป็นเวลา 7 วันร่วมกับยา simvastatin (20mg/kg) �โดยทำการเก็บตัวอย่างเลือดในหนูกลุ่มที่ได้ยา simvastatin เป็นเวลาทั้งหมด 12 ชั่วโมงเพื่อวัดระดับ simvastatin และ simvastatin acid ด้วยเทคนิค LC-MS/MS และศึกษาการแสดงออกของเอ็มอาร์เอ็นเอ�Mdr1a,�Mdr1b�และ�Slc21a5�ในเซลล์ตับและลำไส้เล็กของหนูแรทด้วยเทคนิค real-time polymerase chain reaction (RT-PCR) รวมถึงศึกษาการทำงานของเอนไซม์ไซโทโครมพี3เอ2 ด้วยเทคนิค HPLC ผลการทดลองพบว่าหนูกลุ่มที่ได้รับน้ำส้มโอร่วมกับยา simvastatin มีค่า AUC0-?�ของ simvastatin เพิ่มขึ้นเป็น 4�เท่า (p<0.01) และ simvastatin acid เป็น 3�เท่า (p<0.01) เมื่อเทียบกับหนูกลุ่มที่ได้รับยา simvastatin อย่างเดียว�ค่าความเข้มข้นสูงสุดเฉลี่ยของยา (Cmax) เพิ่มขึ้น 3.9 เท่า (p<0.01) และ simvastatin acid เพิ่ม 3.6 เท่า (p<0.01) เมื่อเทียบกับหนูกลุ่มที่ได้รับยา simvastatin อย่างเดียว ส่วนค่า Kel, t1/2 และ Tmax�ไม่แตกต่างกันในทั้งสองกลุ่ม�พบการแสดงออกของเอ็มอาร์เอ็นเอ�Mdr1a�ในเซลล์ลำไส้เล็กในกลุ่มที่ได้รับน้ำส้มโอเท่านั้นและกลุ่มที่ได้รับน้ำส้มโอร่วมกับยา simvastatin ลดลงอย่างมีนัยสำคัญทางสถิติ 79.8% (p<0.01) และ 84.3% (p<0.01) ตามลำดับเมื่อเทียบกับกลุ่มควบคุม เช่นเดียวกับการแสดงออกของเอ็มอาร์เอ็นเอ�Mdr1b�ในลำไส้ของหนูทั้งสองกลุ่มลดลง 52.6% (p<0.05) และ 56.9% (p<0.05) ตามลำดับ ส่วนกลุ่มที่ได้รับยา simvastatin เท่านั้นมีการแสดงออกของเอ็มอาร์เอ็นเอ�Mdr1a�และ�Mdr1b�ในเซลล์ลำไส้เล็กไม่แตกต่างอย่างมีนัยสำคัญจากกลุ่มควบคุม ขณะที่การแสดงออกของเอ็มอาร์เอ็นเอ�Slc21a5�ในลำไส้เล็กของหนูทุกกลุ่มไม่แตกต่างจากกลุ่มควบคุม ในเซลล์ตับของหนูแรทกลุ่มที่ได้รับน้ำส้มโอเท่านั้นและกลุ่มที่ได้รับน้ำส้มโอร่วมกับยา simvastatin พบว่ามีการแสดงออกของเอ็มอาร์เอ็นเอ�Slc21a5�ลดลงอย่างมีนัยสำคัญทางสถิติ (p<0.05) เมื่อเทียบกับกลุ่มควบคุม แต่กลุ่มที่ได้รับยา simvastatin อย่างเดียวไม่แตกต่างจากกลุ่มควบคุม �ในขณะที่การแสดงออกของเอ็มอาร์เอ็ เอ�Mdr1a�และ�Mdr1b�ในเซลล์ตับของหนูแรททุกกลุ่มไม่แตกต่างจากกลุ่มควบคุม ผลการศึกษาการทำงานของเอนไซม์ไซโทโครมพี3เอ2�พบว่าหนูกลุ่มที่ได้รับน้ำส้มโอเท่านั้น และกลุ่มที่ได้รับน้ำส้มโอร่วมกับยา simvastatin มีการทำงานของเอนไซม์ไซโทโครมพี3เอ2�ลดลงถึง 51.77% (p<0.01) และ 49.17% (p<0.01) ตามลำดับ แต่ในหนูที่ได้รับยา simvastatin เท่านั้นไม่แตกต่างจากกลุ่มควบคุม โดยสรุปน้ำส้มโอมีผลต่อการเพิ่มระดับยา simvastatin และ simvastatin acid ในพลาสมาของหนูแรท และมีผลลดการแสดงออกของเอ็มอาร์เอ็นเอ�Slc21a5�ในตับและลดการแสดงออกของเอ็มอาร์เอ็นเอ�Mdr1a�และ�Mdr1b�ในลำไส้เล็กของหนูแรท รวมถึงมีผลยับยั้งการทำงานของเอนไซม์ไซโทโครมพี3เอ2 ดังนั้นการศึกษาครั้งนี้แสดงให้เห็นความเสี่ยงของการเกิดอันตรกิริยาระหว่างน้ำส้มโอกับยา simvastatin