logo
    Discovery and engineering of plant metabolic pathways for plant and human health
    0
    Citation
    0
    Reference
    20
    Related Paper
    Secondary metabolism plays an important role in plant life as well as the interaction between plants and environmental factors. Many secondary metabolites derived from plants have been used for the production of medicines, dyes, insecticides, food flavors, fragrances and so on. With increasingly comprehensive understanding of the plant metabolic networks, great progress has been made in the genetic improvement of plant secondary metabolic pathways through gene engineering. Strategies for the genetic engineering of plant secondary metabolism include: (1) enabling the host plant to accumulate a novel desirable compound by transformation of single/multiple enzyme gene (s) or a whole metabolic pathway; (2) decreasing target gene expression or inhibiting competitive metabolic pathway to achieve metabolic flux towards higher production of particular molecules through antisense RNA and RNA interference technologies; (3) effectively manipulating the transcription factors responsible for the metabolic regulation at multiple steps in a given pathway so as to have a great synthesis of the target bio-chemicals. Basing on author's research work on flavonoid synthesis mechanism in soybean seed and its gene engineering, recent progress in the engineering of plant secondary metabolism involved in the synthesis of anthocyanins, flavonoids, alkaloids, terpenoids, benzoic acid derivatives etc are reviewed.
    Metabolic Engineering
    Secondary metabolism
    Metabolic pathway
    Plant metabolism
    Synthetic Biology
    Citations (2)
    Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.
    Plant hormone
    Organelle
    Plant cell
    Citations (0)
    Metabolic pathway
    Metabolic Engineering
    Secondary metabolism
    Primary (astronomy)
    Secondary metabolite
    Synthetic Biology
    Primary metabolite
    Genome-enabled discoveries are the hallmark of 21st century biology, including major discoveries in the biosynthesis and regulation of plant metabolic pathways. Access to next generation sequencing technologies has enabled research on the biosynthesis of diverse plant metabolites, especially secondary metabolites, resulting in a broader understanding of not only the structural and regulatory genes involved in metabolite biosynthesis but also in the evolution of chemical diversity in the plant kingdom. Several paradigms that govern secondary metabolism have emerged, including that (1) gene family expansion and diversification contribute to the chemical diversity found in the plant kingdom, (2) genes encoding biochemical pathway components are frequently transcriptionally coregulated, and (3) physical clustering of nonhomologous genes that encode components of secondary metabolic pathways can occur. With an increasing knowledge base that is coupled with user-friendly and inexpensive technologies, biochemists are poised to accelerate the annotation of biochemical pathways relevant to human health, agriculture, and the environment.
    Secondary metabolism
    Metabolic pathway
    ENCODE
    Citations (40)
    Soybean loss due to pests and pathogens is a serious problem worldwide. Soybean producers have few options to manage diseases caused by general pathogens where major genes for full resistance have not been discovered. The innate defense of soybean plants could be enhanced by improving content and composition of lignin by genetic engineering of the phenylpropanoid pathway. We used a novel technique of germ-line genetic transformation of soybean plants via natural pollen tubes as vectors. This technique uses Agrobacterium tumefaciens to mediate transfer of genes of interest to the zygote to introduce the key lignification genes (PtMYB4, PAL5, F5H, CAD1) into soybean genome. We observed 5.6% average transformation efficiency in the first generation of transgenic plants and in the second generation the presence of the transgene constructs was confirmed in more than 50% (for CsVMV/PtMYB4sens, 35SVTM/PAL5, C4H/F5H, CsVMV/CAD1 constructs) transgenic soybean lines. We confirmed the expression of the introduced genes at transcriptional level using RT-PCR and Northern blot. Functional analysis using lignin content determination and the activity of PAL5 and CAD1 enzymes demonstrated that the transgenes perform their function in planta. The proposed technique is effective and inexpensive and can be used to create novel stress and disease resistant soybean genotypes.
    Phenylpropanoid