Flexible, Porous, and Metal–Heteroatom-Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery
98
Citation
54
Reference
10
Related Paper
Citation Trend
Abstract:
Developing an efficient and durable oxygen reduction electrocatalyst is critical for clean-energy technology, such as fuel cells and metal–air batteries. In this study, we developed a facile strategy for the preparation of flexible, porous, and well-dispersed metal–heteroatom-doped carbon nanofibers by direct carbonization of electrospun Zn/Co-ZIFs/PAN nanofibers (Zn/Co-ZIFs/PAN). The obtained Zn/Co and N co-doped porous carbon nanofibers carbonized at 800 °C (Zn/Co–N@PCNFs-800) presented a good flexibility, a continuous porous structure, and a superior oxygen reduction reaction (ORR) catalytic activity to that of commercial 20 wt% Pt/C, in terms of its onset potential (0.98 V vs. RHE), half-wave potential (0.89 V vs. RHE), and limiting current density (− 5.26 mA cm−2). In addition, we tested the suitability and durability of Zn/Co–N@PCNFs-800 as the oxygen cathode for a rechargeable Zn–air battery. The prepared Zn–air batteries exhibited a higher power density (83.5 mW cm−2), a higher specific capacity (640.3 mAh g−1), an excellent reversibility, and a better cycling life than the commercial 20 wt% Pt/C + RuO2 catalysts. This design strategy of flexible porous non-precious metal-doped ORR electrocatalysts obtained from electrospun ZIFs/polymer nanofibers could be extended to fabricate other novel, stable, and easy-to-use multi-functional electrocatalysts for clean-energy technology.Keywords:
Heteroatom
Electrospinning
Carbon fibers
Heteroatom
Reactivity
Cite
Citations (2)
Abstract Poly(hydroxybutyrate‐ co ‐hydroxyvalerate) (PHBV) was electrospun into ultrafine fibrous nonwoven mats. Different from the conventional electrospinning process, which involves a positively charged conductive needle and a grounded fiber collector (i.e., positive voltage (PV) electrospinning), pseudo‐negative voltage (NV) electrospinning, which adopted a setup such that the needle was grounded and the fiber collector was positively charged, was investigated for making ultrafine PHBV fibers. For pseudo‐NV electrospinning, the effects of various electrospinning parameters on fiber morphology and diameter were assessed systematically. The average diameters of PHBV fibers electrospun via pseudo‐NVs were compared with those of PHBV fibers electrospun via PVs. With either PV electrospinning or pseudo‐NV electrospinning, the average diameters of electrospun fibers ranged between 500 nm and 4 μm, and they could be controlled by varying the electrospinning parameters. The scientific significance and technological implication of fiber formation by PV electrospinning and pseudo‐NV electrospinning in the field of tissue engineering were discussed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers
Electrospinning
Cite
Citations (17)
Abstract Carbon nanofibers prepared via electrospinning and following carbonization are summarized by focusing on the structure and properties in relation to their applications, after a brief review of electrospinning of some polymers. Carbon precursors, pore structure control, improvement in electrical conductivity,and metal loading into carbon nanofibers via electrospinning are discussed from the viewpoint of structure and texture control of carbon.
Electrospinning
Carbon fibers
Cite
Citations (750)
Heteroatom
Cite
Citations (0)
Heteroatom
Reactivity
Cite
Citations (6)
This chapter contains sections titled: Introduction Five-membered systems with one heteroatom Five-membered systems with two heteroatoms Five-membered ring systems with more than two heteroatoms Six-membered heterocycles containing one heteroatom Six-membered heterocycles containing at least two heteroatoms Seven-membered heterocycles containing at least two heteroatoms: 1,4 and 1,5-benzodiazepines Polycyclic heterocycles Conclusion References
Heteroatom
Cite
Citations (19)
Heteroatom
Cite
Citations (0)
Heteroatom
Cite
Citations (0)
Electrospinning
Cite
Citations (56)
This chapter contains sections titled: Three-Membered Heterocycles with One Heteroatom Four-Membered Heterocycles with One Heteroatom Five-Membered Heterocycles with One Heteroatom Five-Membered Heterocycles with Two Heteroatoms Five-Membered Heterocycles with Three Heteroatoms Five-Membered Heterocycles with Four Heteroatoms Six-Membered Heterocycles with One Heteroatom Six-Membered Heterocycles with Two Heteroatoms Six-Membered Heterocycles with Three Heteroatoms Larger Heterocyclic and Polycyclic Ring Systems References
Heteroatom
Cite
Citations (2)