logo
    Genetic Diversity of Two Isolates in Strawberry mild yellow edge virus from Korea
    4
    Citation
    16
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Two isolates of Strawberry mild yellow edge virus were newly isolated in strawberry (Fragaria x ananassa) cultivar Selhyang and Kamhong from Korea. The complete nucleotide sequence of the coat protein (CP) of two Korean isolates were determined and analyzed. Sequence identity of nucleotide and amino acid between SH and KH isolates was 90.4% and 95.5%, respectively. The comparison of three Korean isolates including previously reported KNS1 with 45 SMYEV sequences from other countries deposited in GenBank database revealed an identity ranging from 81.2% to 100%. The phylogenetic analysis of CP of all SMYEV isolates showed the five subgroups (I-V), with Korean isolates being divided into two different subgroups. The isolates KH and KNS1 were included in subgroup I, whereas SH was included in subgroup IV which is new phylogenetic subgroup. Genetic diversity analysis indicated that new subgroup had greater variability and nucleotide diversity between subgroups resulted in values ranging from 0.0863 to 0.18004. This report represents the first molecular characterization of SMYEV isolates from Korea.
    Rhesus monkey rhadinovirus (RRV) is one of the closest phylogenetic relatives to the human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV), yet it has the distinct experimental advantage of entering efficiently into lytic replication and growing to high titers in culture. RRV therefore holds promise as a potentially attractive model with which to study gammaherpesvirus structure and assembly. We have isolated RRV capsids, determined their molecular composition, and identified the genes encoding five of the main capsid structural proteins. Our data indicate that, as with other herpesviruses, lytic infection with RRV leads to the synthesis of three distinct intranuclear capsid species. However, in contrast to the inefficiency of KSHV maturation following reactivation from latently infected B-cell lines (K. Nealon, W. W. Newcomb, T. R. Pray, C. S. Craik, J. C. Brown, and D. H. Kedes, J. Virol. 75:2866-2878, 2001), de novo infection of immortalized rhesus fibroblasts with RRV results in the release of high levels of infectious virions with genome-containing C capsids at their center. Together, our findings argue for the use of RRV as a powerful model with which to study the structure and assembly of gammaherpesviruses and, specifically, the human rhadinovirus,KSHV.
    Lytic cycle
    To investigate biological characteristics of the IVpi-189 progeny virus derived from the culture of influenza A virus as a live-attenuated vaccine candidate. Persistent infection of a cultured cell line with influenza A virus (MDCK-IVpi) was established by incubating continuously influenza virus-infected cells at a lower temperature. The infectious progeny virus derived from MDCK-IVpi cells at the 189rd subculture was designated as the IVpi-189 strain of influenza virus. The cytopathic effect induced by IVpi-189 virus was observed under different temperature conditions. The production of infectious progeny virus was examined at 38 and 32 degrees C by plaque titration of cell-associated and released virus. IVpi-189 virus showed cytopathic effect as strong as that of IVwt in infected cell line of MDCK at 32 degrees C. However, when culture temperature was raised to 38 degrees C, the cytopathic effect induced by IVpi-189 virus was delayed and less pronounced. Virus growth in IVpi-189 virus-infected cells at 38 degrees C was significantly reduced as compared with that of IVwt virus, although both viruses yielded nearly equivalent high titers of cell-associated and released virus at 32 degrees C. The reasons of the decreased proliferative ability of IVpi-189 virus at high culture temperature were unrelated with virus inactivation or the release of progeny virus, but associated with the decreased replication of infectious progeny virus in the infected cells. IVpi-189 virus derived from MDCK cells infected persistently with influenza A virus showed biological characteristics as a potential live-attenuated vaccine candidate.
    Cytopathic effect
    Subculture (biology)
    Viral culture
    Citations (0)
    ABSTRACT Recent DNA sequence analysis indicates that rhesus rhadinovirus (RRV) is a member of the lymphotropic gamma-2 herpesvirus family. To determine if RRV is lymphotropic, peripheral blood mononuclear cells from naturally infected monkeys were separated by immunomagnetic bead depletion and analyzed for the presence of RRV by virus isolation and nested PCR. The recovery and consistent detection of RRV in the CD20 + -enriched fraction clearly demonstrates that B lymphocytes are a major site of virus persistence.
    Summary Six caprine arthritis-encephalitis virus (CAEV)-free goats kept in strict isolation were inoculated intravenously with a cloned CAEV isolate (virus 020). At 78 weeks post-infection a virus (virus 095) isolated from one of the goats was shown to have the characteristics of CAEV, but was antigenically distinct from virus 020 and two other CAEV isolates by serum neutralization tests. Serum from the goat that had the variant virus neutralized the inoculum virus and the variant virus but serum from other inoculated goats neutralized only the inoculum virus. The variant virus and the inoculum virus were shown to co-exist in the infected goat, but the presence of the antigenic variant did not appear to be associated with an increase in severity of lesions compared with other inoculated goats.
    Antigenic variation
    Abstract The hemagglutinin (HA) protein of influenza virus mediates essential viral functions including the binding to host receptor and virus entry. It also has the antigenic sites required for virus neutralization by host antibodies. Here, we characterized an H3N2 triple reassortant (TR) influenza virus (A/turkey/Ohio/313053/04) with a mutation at the receptor binding domain (Asp190Ala) that occurred upon virus transmission from turkeys to pigs in an experimental infection study. The mutant virus replicated less efficiently than the parental virus in human, pig and turkey primary tracheal/bronchial epithelial cells, with more than 3-log 10 difference in virus titer at 72 hours post infection. In addition, the mutant virus demonstrated lower binding efficiency to plasma membrane preparations from all three cell types compared to the parental virus. Antisera raised against the parental virus reacted equally to both homologous and heterlogous viruses, however, antisera raised against the mutant virus showed 4-8 folds lower reactivity to the parental virus.
    H5N1 genetic structure
    Antibody-dependent enhancement
    Veterinary virology
    Citations (9)
    More than 200 cells were cloned from populations of mammalian cells persistently infected with Japanese encephalitis virus. Only four cloned cultures contained cells that had viral antigen measurable by immunofluorescence and that released infectious virus, yet all clones harbored virus-specific RNA. Superinfection of cloned cells with wild-type Japanese encephalitis virus did not produce cytopathic effects, but resulted in production of viral antigen and infectious virus in formerly nonproducing clones. Cocultivation of nonproducer clone cells with normally permissive cells did not induce virus production, nor did treatment of nonproducer clones with various inhibitors of DNA, RNA, or protein synthesis. It is suggested that the cloning procedure may have selected for a particular subpopulation of cells and that defective virus is also involved in establishment and maintenance of persistent infection.
    clone (Java method)
    Viral transformation
    Superinfection
    Viral Interference
    Helper virus
    Permissiveness