Photocatalytic overall water splitting using modified SrTiO3
1
Citation
57
Reference
10
Related Paper
Citation Trend
Abstract:
Solar light utilization for photocatalytic overall water splitting (POWS) is a promising alternative to electrolysis to produce hydrogen, since photocatalytic water splitting is simple, and can be operated at low-cost. Transformation and storage of solar energy in the form hydrogen can significantly reduce the rate of the greenhouse gas emissions. Given the low-cost and simplicity of photocatalytic hydrogen production, this thesis has focused on designing an efficient photocatalytic water splitting system.SrTiO3 has been shown to be capable of driving photocatalytic overall water splitting under UV light illumination. In this thesis, SrTiO3 is used as the photocatalyst and the performance of SrTiO3 is discussed in the POWS reaction. Several strategies have been applied to understand particular functions of the SrTiO3-based photocatalyst in photocatalytic overall water splitting with following aspects: i) the photocatalytic transients are collected to understand how Ni/NiO co-catalyst is changed during illumination; ii) Mg is doped into the structure of SrTiO3 to improve the photocatalytic activity; iii) Cr2O3 is introduced on Mg:SrTiO3-NiOx composite to improve the stability of photocatalytic gas evolution; iv) state-of-the art semiconductors, Al:SrTiO3 and Mg:SrTiO3, are compared in the same conditions. Generally, the effect of the various modifications on the photocatalytic gas evolution rates has been revealed by reliable on-line GC measurements. Due to the fast detection mode of the GC, the applied setup allows to determine transients in gas-evolution to reveal activity and stability of the tested photocatalysts.Keywords:
Photocatalytic water splitting
Electrolysis of water
Non-blocking I/O
Visible spectrum
Photocatalytic water splitting
Nanomaterials
Cite
Citations (25)
Oxygen evolution
Electrolysis of water
Power-to-Gas
Electrolytic process
Cite
Citations (33)
Photocatalytic overall water splitting into H2 and O2 is expected to be a promising method for the efficient utilization of solar energy. The design of optimal photocatalyst structures is a key to efficient overall water splitting, and the development of photocatalysts which can efficiently convert large portion of visible light spectrum has been required. Recently, a series of complex perovskite type transition metal oxynitrides, LaMgxT 1-xO1+3xN2-3x, was developed as photocatalysts for direct water splitting operable at wide wavelength of visible light. In addition two-step excitation water splitting via a novel photocatalytic device termed as photocatalyst sheet was developed. This consists of two types of semiconductors (hydrogen evolution photocatalyst and oxygen evolution photocatalyst) particles embedded in a conductive layer, and showed high efficiency for overall water splitting. These recent advances in photocatalytic water splitting were introduced.
Photocatalytic water splitting
Visible spectrum
Oxygen evolution
Cite
Citations (1)
Photocatalytic water splitting is a potential way to utilize solar energy. To be practically useful, it is important to have a high solar-to-hydrogen (STH) efficiency. In this study, we propose a conceptually new photocatalytic water splitting model based on intermediate bands (IBs). In this new model, introducing IBs within the band gap can significantly increase the STH efficiency limit (from 30.7% to 48.1% without an overpotential and from 13.4% to 36.2% with overpotentials) compared to that in conventional single-band gap photocatalytic water splitting. First-principles calculations indicate that N-doped TiO2, Bi-doped TiO2, and P-doped ZnO have suitable IBs that can be used to construct IB photocatalytic water splitting systems. The STH efficiency limits of these three doped systems are 10.0%, 12.0%, and 19.0%, respectively, while those of pristine TiO2 and ZnO without IB are only 0.9% and 1.6%, respectively. The IB photocatalytic water splitting model proposed in this study opens a new avenue for photocatalytic water splitting design.
Overpotential
Photocatalytic water splitting
Cite
Citations (10)
With a view to the particularity of overall water splitting,the preparation of photocatalytic materials and their performance for hydrogen and oxygen production from overall water splitting are reviewed in relation to the design of structure and energy band of photocatalytic materials as well as their surface modification.The principle of two step reaction(Z system) for overall water splitting and several currently available Z systems are introduced.Furthermore,existing problems of photocatalytic overall water splitting are also briefed.
Photocatalytic water splitting
Oxygen evolution
Cite
Citations (0)
Oxygen evolution
Cite
Citations (21)
Hydrogen is the most efficient energy carrier. Hydrogen can be obtained from different sources of raw materials including water. Among many hydrogen production methods, eco-friendly and high purity of hydrogen can be obtained by water electrolysis. However, In terms of sustainability and environmental impact, PEM water electrolysis was considered as most promising techniques for high pure efficient hydrogen production from renewable energy sources and emits only oxygen as byproduct without any carbon emissions. Moreover, the produced hydrogen (H2) and oxygen (O2) directly used for fuel cell and industrial applications. However, overall water splitting resulting in only 4% of global industrial hydrogen being produced by electrolysis of water, mainly due to the economic issues. Nowadays, increased the desire production of green hydrogen has increased the interest on PEM water electrolysis. Thus the considerable research has been completed recently in the development of cost effective electrocatalysts for PEM water electrolysis. In this present review, we discussed about the recent developments in the PEM water electrolysis including high performance low cost HER and OER electrocatalysts and their challenges new and old related to electrocatalysts and PEM cell components also addressed. This review will contribute further research improvements and a road map in order to support in developing the PEM water electrolyser as a commercially feasible hydrogen production purpose.
Electrolysis of water
Power-to-Gas
High-pressure electrolysis
Energy carrier
High Temperature Electrolysis
Cite
Citations (1,632)
Non-blocking I/O
Photocurrent
Oxygen evolution
Photoelectrochemical cell
Cite
Citations (30)
Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.
Photocatalytic water splitting
Environmentally Friendly
Cite
Citations (473)
Hydrogen is widely used in the field of energy and power technology, and has many advantages, such as strong thermal conductivity, good combustion performance, cleanness, multiple available forms, recyclability, etc. Hydrogen production by electrolysis of water is widely used as an efficient method to produce hydrogen. This paper introduces three widely used ways and principles of hydrogen production through water electrolysis, and summarizes the current application status of hydrogen production through water electrolysis in various scientific research fields in China. The application of hydrogen production from electrolytic water in new energy, transportation, construction and other fields is analyzed, and the future application of hydrogen production from electrolytic water is prospected.
Electrolysis of water
High-pressure electrolysis
High Temperature Electrolysis
Energy carrier
Power-to-Gas
Alkaline water electrolysis
Cite
Citations (0)