logo
    Effect of Molding Condition on Mechanical properties during Joining of GMT-Sheet
    0
    Citation
    0
    Reference
    20
    Related Paper
    Unidirectional tape-placement technologies appeared as a promising alternative due to their potential in large-scale component production. While the optimization strategies used to define the tape lay-out can be of different nature, the utilization of tape-to-tape joints is inevitable. Whereas several studies have focussed their efforts on the process and design stages, no study has yet addressed the influence of the manufacturing process on the mechanics of unidirectional tape joints. In this study, the strength of single-lap-joint assemblies of carbon fibre-reinforced thermoplastic tapes under tensile loading was analysed. The dependence of the strength on the overlap geometry and the manufacturing pressure was of main focus. Single-lap-joint assemblies with rectangular and rounded overlaps of the same overlap area were prepared employing a pre-heating stage at 250℃ and forming pressures from 3 to 100 bar. Failure of the assemblies was not observed on the overlap itself but instead on the zone near the overlap end on the adherend. Traditional determination of strength of single-lap-joint assemblies is not applicable in this case. Consequently, a typical Hashin failure criterion was used to model the failure of the assemblies. The study showed that although cohesive failure is not likely within the analysed pressure range, overlap geometry and forming-pressure affect the strength of single-lap-joint assemblies under tensile loading.
    Lap joint
    Bar (unit)
    Thermoplastic Composites
    Citations (12)
    In this work, experiments were conducted to stamp form glass-fiber reinforced thermoplastics with different widths of hour-glass shapes. A forming limit diagram (FLD) is established based on the experimental data for this material, depicting strain forming limits at different deformation modes. The material system involved in the study is a glass-fiber reinforced polypropylene composite (TWINTEX®) with a fiber orientation of 0°/90° along the warp and weft directions. In this study, the conventional FLD method is adapted to use on thermoplastic composites and it is found that the major principle strain limit is the highest when the strain ratio is around −0.5.
    Thermoplastic Composites
    Polypropylene
    Strain (injury)
    Fiber-reinforced composite
    Citations (0)
    In order to substitute and recycle the existing automobile parts for GMT-sheet, researches on the effects of GMT-sheet on the establishment of precise joining strength, joining condition that are lap length of joining part, compression ratio, and closure speed must be carried out but until now. Besides, many researches on adhesion joint had been conducted until now but no systematic research on press lap joint of GMT-sheet has been implemented until recently and the reliability of joining strength is not yet established. In press lap joining molding of GMT-sheet, tensile stress and lap joining connection efficiency was increased according to the increase of lap length L. However, as the increase of compression ratio and fiber content ratio per unit area was higher in tensile test, it has caused the deterioration of lap joining efficiency after joining molding of GMT-sheet. Clarify joining strength and lap joining efficiency during high temperature compression press lap joining molding of GMT-sheet and research data regarding to the lap length of joining part was presented. The purpose of this study is to contribute to the substitution of existing products as well as usage development in non-automobile field and also to find out precise dynamic characteristics as designing data of structures.
    Lap joint
    Sheet moulding compound
    Molding (decorative)
    Compression molding
    The study focuses on the influence of fiber architecture (sequence and orientation) on flexural strength of glass fiber reinforced composite material. Composite materials are used increasingly in various fields such as space and aviation industries, architectural structures, shipbuilding materials, sporting goods, and interior and structural materials of automobiles due to the excellence of mechanical characteristics as well as light weight, heat resistance, and control characteristics. The main purpose of this study is to obtain the effects of fiber sequence and orientation to the flexural properties of laminated polymer composite material. Glass fiber reinforced polymer laminates are produced with each laminate consists of four layers of lamina. The matrix used is thermoset polyester with woven roving and chopped strand mat E-glass fiber as reinforcement materials. Each sample is different from another in terms of stacking sequence and orientation angles. Hand lay-up process is used to produce composite laminates and a tungsten carbide jigsaw cutter is used to cut the samples to required dimensions. The experimental work is carried out in accordance to three-point flexure test of ASTM-D790. It is noted from this work that the existence of chopped strand mat had significantly improved the flexural properties of the composite laminates.
    Thermosetting polymer
    Citations (0)
    Friction Press Joining (FPJ) is a suitable method for producing composites of aluminum and thermoplastics in lap joint configuration, which is based on modified Friction Stir Welding (FSW). During the joining process, a rotating cylindrical tool is pressed onto an aluminum surface. The resulting friction generates heat that is conducted to the bonding zone, leading to localized softening of the thermoplastics. In combination with the tool’s axial force and a suitable pre-treatment of the aluminum surface, a resilient composite compound is created. This paper presents the results of a surface pre-treatment of aluminum using laserradiation. The textures are essential for a strong connection, as they can significantly influence effective joining mechanisms, such as microscopic and macroscopic form fit. The experiments were carried out using different surface treatments by means of a single-mode laser for joints of aluminum (EN AW-6082 T6) and glass fiber reinforced polyamide (PA6 GF15). The aim of the study was an increased understanding of process behavior and joining mechanisms. The shear strength could be increased by 40 % compared to previous studies with the presented laser surface treatment.
    Friction Stir Welding
    Abstract Glass mat thermoplastics (GMT) have the superior property/price ratio, they can be used in many industrial aspects. In this paper, through a 100mm-deep mold, the glass mat distribution, fiber orientation and mechanical properties of the part were studied under different blank designs. In conclusion, (1) Blank design has effect on the mat distribution and fiber orientation, and finally on the mechanical properties of the part. To a part, there is an optimum blank design, which will not greatly decrease the mechanical properties of the sheets in the final part. (2) In compression molding, interlaminar slippage, blank ejection and resin solidification result in mat distribution and fiber orientation.
    Blank
    Slippage
    Compression molding
    Molding (decorative)
    Citations (2)