logo
    Coordination between Prefrontal Cortex Clock Gene Expression and Corticosterone Contributes to Enhanced Conditioned Fear Extinction Recall
    23
    Citation
    71
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Post-traumatic stress disorder (PTSD) is associated with impaired conditioned fear extinction learning, a ventromedial prefrontal cortex (vmPFC)-dependent process. PTSD is also associated with dysregulation of vmPFC, circadian, and glucocorticoid hormone function. Rats have rhythmic clock gene expression in the vmPFC that requires appropriate diurnal circulatory patterns of corticosterone (CORT), suggesting the presence of CORT-entrained intrinsic circadian clock function within the PFC. We examined the role of vmPFC clock gene expression and its interaction with CORT profiles in regulation of auditory conditioned fear extinction learning. Extinction learning and recall were examined in male rats trained and tested either in the night (active phase) or in the day (inactive phase). Using a viral vector strategy, Per1 and Per2 clock gene expression were selectively knocked down within the vmPFC. Circulating CORT profiles were manipulated via adrenalectomy (ADX) ± diurnal and acute CORT replacement. Rats trained and tested during the night exhibited superior conditioned fear extinction recall that was absent in rats that had knock-down of vmPFC clock gene expression. Similarly, the superior nighttime extinction recall was absent in ADX rats, but restored in ADX rats given a combination of a diurnal pattern of CORT and acute elevation of CORT during the postextinction training consolidation period. Thus, conditioned fear extinction learning is regulated in a diurnal fashion that requires normal vmPFC clock gene expression and a combination of circadian and training-associated CORT. Strategic manipulation of these factors may enhance the therapeutic outcome of conditioned fear extinction related treatments in the clinical setting.
    Keywords:
    Corticosterone
    PER1
    PER2
    Extinction (optical mineralogy)
    Infralimbic cortex
    In mammals, the circadian oscillator within the suprachiasmatic nuclei (SCN) entrains circadian clocks in numerous peripheral tissues. Central and peripheral clocks share a molecular core clock mechanism governing daily time measurement. In the rat SCN, the molecular clockwork develops gradually during postnatal ontogenesis. The aim of the present work was to elucidate when during ontogenesis the expression of clock genes in the rat liver starts to be rhythmic. Daily profiles of mRNA expression of clock genes Per1, Per2, Cry1, Clock, Rev-Erbalpha, and Bmal1 were analyzed in the liver of fetuses at embryonic day 20 (E20) or pups at postnatal age 2 (P2), P10, P20, P30, and in adults by real-time RT-PCR. At E20, only a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Cry1 but no clear circadian rhythms in expression of other clock genes were detectable. At P2, a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Bmal1 but no rhythms in expression of other genes were detected. At P10, significant rhythms only in Per1 and Rev-Erbalpha expression were present. At P20, clear circadian rhythms in the expression of Per1, Per2, Rev-Erbalpha, and Bmal1, but not yet of Cry1 and Clock, were detected. At P30, all clock genes were expressed rhythmically. The phase of the rhythms shifted between all studied developmental periods until the adult stage was achieved. The data indicate that the development of the molecular clockwork in the rat liver proceeds gradually and is roughly completed by 30 days after birth.
    PER1
    PER2
    Oscillating gene
    Clockwork
    Citations (89)
    The central circadian clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the circadian clockwork of the SCN constitutes a self-sustained autoregulatory feedback mechanism reflected by the rhythmic expression of clock genes. However, recent studies have shown the presence of extrahypothalamic oscillators in other areas of the brain including the cerebellum. In the present study, the authors unravel the cerebellar molecular clock by analyzing clock gene expression in the cerebellum of the rat by use of radiochemical in situ hybridization and quantitative real-time polymerase chain reaction. The authors here show that all core clock genes, i.e., Per1, Per2, Per3, Cry1, Cry2, Clock, Arntl, and Nr1d1, as well as the clock-controlled gene Dbp, are expressed in the granular and Purkinje cell layers of the cerebellar cortex. Among these genes, Per1, Per2, Per3, Cry1, Arntl, Nr1d1, and Dbp were found to exhibit circadian rhythms in a sequential temporal manner similar to that of the SCN, but with several hours of delay. The results of lesion studies indicate that the molecular oscillatory profiles of Per1, Per2, and Cry1 in the cerebellum are controlled, though possibly indirectly, by the central clock of the SCN. These data support the presence of a circadian oscillator in the cortex of the rat cerebellum. (Author correspondence: mrath@sund.ku.dk)
    PER2
    PER1
    The SCN as a site of the circadian clock itself exhibits rhythmicity. A molecular clockwork responsible for the rhythmicity consists of clock genes and their negative and positive transcriptional-translational feedback loops. The authors’ previous work showed that rhythms in clock gene expression in the rat SCN were not yet detectable at embryonic day (E) 19 but were already present at postnatal day (P) 3. The aim of the present study was to elucidate when during the interval E19-P3 the rhythms start to develop in clock gene expression and in clock-controlled, namely in arginine-vasopressin (AVP), gene expression. Daily profiles of Per1, Per2, Cry1, Bmal1, and Clock mRNA and of AVP heteronuclear (hn) RNA as an indicator of AVP gene transcription were assessed in the SCN of fetuses at E20 and of newborn rats at P1 and P2 by the in situ hybridization method. At E20, formation of a rhythm in Per1 expression was indicated, but no rhythms in expression of other clock genes or of the AVP gene were detected. At P1, rhythms in Per1, Bmal1, and AVP and a forming rhythm in Per2 but no rhythm in Cry1 expression were present in the SCN. The Per1 mRNA rhythm was, however, only slightly pronounced. The Bmal1 mRNA rhythm, although pronounced, exhibited still an atypical shape. Only the AVP hnRNA rhythm resembled that of adult rats. At P2, marked rhythms of Per1, Per2, and Bmal1 and a forming rhythm of Cry1, but not of Clock, expression were present. The data suggest that rhythms in clock gene expression for the most part develop postnatally and that other mechanisms besides the core clockwork might be involved in the generation of the rhythmic AVP gene expression in the rat SCN during early ontogenesis.
    PER2
    PER1
    Citations (71)
    Context: Glucocorticoid circulating levels in healthy individuals oscillate according to a circadian rhythm, influenced by the molecular system of clock genes. In Cushing's syndrome, there is an altered cortisol daily rhythm, which can be associated to disruption of clock genes rhythmic expression. Objective: Evaluate the expression of clock genes (CLOCK, BMAL1, CRY1, CRY2, PER1, PER2, PER3) in leukocytes of healthy individuals and in patients with Cushing's disease (CD). Design and Participants: Case-control study with female Cushing’s disease patients (n=12) and controls (n=13). Main Outcome Measures: Participants underwent salivary cortisol measurement at 0900h and 2300h. Peripheral blood samples were obtained at 0900h, 1300h, 1700h and 2300h for assessing clock genes expression by qPCR. Gene expression profiles were evaluated by Cosinor analysis method. Results: In healthy controls, there was a circadian variation of the mRNA expression of CLOCK (p<0.01), BMAL1 (p=0.02), CRY1 (p=0.02), PER2 (p<0.01), and PER3 (p<0.01), while no circadian rhythm of PER1, and CRY2 was observed. The expression of PER2 and PER3 genes in control leukocytes showed a late afternoon acrophase at 17.5h (14.9-20.1) and 19.5h (17.9-21.0), respectively, similar to CLOCK gene acrophase at 20.2h (19.0-21.4) while CRY1 showed night acrophase at 22.4h (20.1-24.6) as well as BMAL1 acrophase at 23.6h (21.7-0.49), respectively. In Cushing´s Disease patients, there was a loss of the pattern of clock genes circadian rhythmicity, in concomitance with the loss of cortisol circadian rhythm. One exception was CRY2, which presented a circadian variation (p<0.01), with acrophase during the dark phase at 0.5h (22.5-2.6). Conclusions: Our data suggest that hypercortisolism leads to dysregulation of circadian clock genes expression in Cushing's disease. CRY2 higher expression at night outlines its putative role in the cortisol circadian rhythm disruption. Although the role of clock genes dysregulation in the pathogenesis of Cushing's disease metabolic derangements is still not completely established, it is possible that it synergistically contributes to hypercortisolism to the severity of metabolic features of Cushing's disease. Unless otherwise noted, all abstracts presented at ENDO are embargoed until the date and time of presentation. For oral presentations, the abstracts are embargoed until the session begins. Abstracts presented at a news conference are embargoed until the date and time of the news conference. The Endocrine Society reserves the right to lift the embargo on specific abstracts that are selected for promotion prior to or during ENDO.
    PER2
    PER1
    Cushing's disease
    Citations (0)
    A comprehensive understanding of the equine circadian clock involves the evaluation of circadian clock gene expression. A non-invasive and effective method for detecting equine clock gene expression has yet to be established. Currently, research surrounding this area has relied on collecting tissue biopsies or blood samples that can often be costly, time consuming and uncomfortable for the animal.Five mares were individually stabled under a light-dark (LD) cycle that mimicked the external environmental photoperiod during a time of year corresponding with the vernal equinox. Hair follicles were collected every 4 h over a 24-h period by plucking hairs from the mane. RNA was extracted and quantitative (q) PCR assays were performed to determine temporal expression patterns for the core clock genes; ARNTL, CRY1, PER1, PER2, NR1D2 and the clock controlled gene, DBP.Repeated measures ANOVA for the clock gene transcripts PER1 and PER2 and the clock controlled gene, DBP, revealed significant variation in expression over time (p < .05, respectively). Cosinor analysis confirmed a significant 24-h temporal component for PER1 (p = .002) and DBP (p = .0033) and also detected rhythmicity for NR1D2 (p = .0331).We show that the extraction of RNA from equine hair follicle cells can identify the circadian 24 h oscillations of specific clock genes and a clock-controlled gene and therefore provide a valuable non-invasive method for evaluating the equine peripheral circadian clock. This method will serve as a useful tool for future evaluations of equine circadian rhythms and their response to environmental changes.
    PER2
    PER1
    Oscillating gene
    Citations (18)
    Glucocorticoids are considered to synchronize the rhythmicity of clock genes in peripheral tissues; however, the role of circadian variations of endogenous glucocorticoids is not well defined. In the present study, we examined whether peripheral circadian clocks were impaired by adrenalectomy. To achieve this, we tested the circadian rhythmicity of core clock genes (Bmal1, Per1-3, Cry1, RevErbα, Rora), clock-output genes (Dbp, E4bp4) and a glucocorticoid- and clock-controlled gene (Gilz) in liver, jejunum, kidney cortex, splenocytes and visceral adipose tissue (VAT). Adrenalectomy did not affect the phase of clock gene rhythms but distinctly modulated clock gene mRNA levels, and this effect was partially tissue-dependent. Adrenalectomy had a significant inhibitory effect on the level of Per1 mRNA in VAT, liver and jejunum, but not in kidney and splenocytes. Similarly, adrenalectomy down-regulated mRNA levels of Per2 in splenocytes and VAT, Per3 in jejunum, RevErbα in VAT and Dbp in VAT, kidney and splenocytes, whereas the mRNA amounts of Per1 and Per2 in kidney and Per3 in VAT and splenocytes were up-regulated. On the other hand, adrenalectomy had minimal effects on Rora and E4bp4 mRNAs. Adrenalectomy also resulted in decreased level of Gilz mRNA but did not alter the phase of its diurnal rhythm. Collectively, these findings suggest that adrenalectomy alters the mRNA levels of core clock genes and clock-output genes in peripheral organs and may cause tissue-specific modulations of their circadian profiles, which are reflected in changes of the amplitudes but not phases. Thus, the circulating corticosteroids are necessary for maintaining the high-amplitude rhythmicity of the peripheral clocks in a tissue-specific manner.
    PER2
    PER1
    Splenocyte