logo
    Estimation of economic losses from tropical cyclones in China at 1.5 °C and 2.0 °C warming using the regional climate model COSMO‐CLM
    13
    Citation
    74
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Adverse impacts and increasing economic losses from tropical cyclones (TCs) are a major focus in respect to the potential global warming of 1.5 °C or even 2.0 °C. Based on observed meteorological data and county‐scale loss records, loss‐inducing rainfall and wind speed thresholds are identified using the regional climate model CCLM to project future TC events in China. An established damage function is combined with future gross domestic product predictions under five shared socio‐economic pathways. At the 1.5 °C warming level, normalized TC losses will be four times higher than in the reference period (1986–2005). At the 2.0 °C warming level, a sevenfold increase is projected. Relative to the 1.5 °C warming level, TCs will become more frequent under the 2.0 °C scenario, especially along the southeast coast of China. Nearly 0.2–0.5% of the increase in gross domestic product might be offset by TC losses between the 1.5 °C and 2.0 °C warming levels, and the single highest TC loss at 2.0 °C may double that at 1.5 °C, with a larger affected area and more severe rainstorms and wind speeds. Rainfall is attributed more often to TC losses than wind speed. Limiting global warming at 1.5 °C would avoid an estimated increase in TC losses of more than 120 billion CNY annually.
    Keywords:
    Limiting
    "Reply to “Comments on ‘Nonlinear Response of a Tropical Cyclone Vortex to Prescribed Eyewall Heating with and without Surface Friction in TCM4: Implications for Tropical Cyclone Intensification’”" published on Dec 2016 by American Meteorological Society.
    Eye
    Tropical cyclogenesis
    Rainband
    Citations (5)
    The association of tall precipitation with tropical cyclone intensification may have implications for the difficult task of forecasting the destructive potential of tropical cyclones. This study uses all of the well‐centered overflights of tropical cyclones from 1998 to 2003 seen by the TRMM Precipitation Radar. The chance of intensification increases when one or more extremely tall convective towers exist in the tropical cyclone's eyewall. We define an extremely tall convective tower as a convective cell with a 20 dBZ reflectivity signal that reaches an altitude of at least 14.5 km. In addition, we adapt this radar technique for use with more plentiful infrared and passive microwave data.
    Tropical cyclone scales
    Rainband
    Eye
    Tropical cyclogenesis
    African easterly jet
    Typhoon
    Citations (97)
    "Comments on “Nonlinear Response of a Tropical Cyclone Vortex to Prescribed Eyewall Heating with and without Surface Friction in TCM4: Implications for Tropical Cyclone Intensification”" published on Dec 2016 by American Meteorological Society.
    Eye
    Tropical cyclogenesis
    Rainband
    Citations (10)
    Abstract: This study has selected a vortex tracking algorithm scheme for simulating the activity of tropical cyclone in the Vietnam East Sea by CCAM model. The results show that the CCAM model is able to simulate well the large scale in each month through a reasonable description of the movement rules of the tropical cyclone in the study area. Then, this vortex tracking algorithm scheme was applied to test the seasonal forecast with the outputs of the CCAM model with a resolution of 20km for September 2018 and October 2018. The obtaining results are forecasted quite closely in terms of both quantity and high potential occurrence areas of the tropical cyclone when compared with reality. In particular, for October 2018, although the activity area of ​​the tropical cyclone - YUTU is significantly different from the multi-year average activity position, the seasonal forecast results are obtained from the 120 members of the CCAM model captured this difference. This suggests that it is possible to apply the CCAM model in combination with the selected vortex tracking algorithm scheme for the seasonal forecast of the tropical cyclone over the Vietnam East Sea region in the future. Keywords: Vortex tracking algorithm scheme, Tropical storm, Tropical cyclone, The Vietnam East Sea. References [1] Đinh Văn Ưu, Đánh giá quy luật biến động dài hạn và xu thế biến đổi số lượng bão và áp thấp nhiệt đới trên khu vực Tây Thái Bình Dương, Biển Đông và ven biển Việt Nam, Tạp chí khoa học Đại học Quốc gia Hà Nội, Khoa học Tự nhiên và Công nghệ 25 3S (2009) 542-550.[2] J.C.L. Chan, J.E. Shi, K.S. Liu, Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific,Weather Forecast 16 (2001) 491-498.[3] S.J. Camargo, A.G. Barnston, Experimental seasonal dynamical forecasts of tropical cyclone activity at IRI, Weather Forecasting 24 (2009) 472-491.[4] P.J. Klotzbach, W.M. Gray, Twenty-five years of Atlantic basin seasonal hurricane forecasts (1984−2008), Geophys Res Lett. 36: L09711 (2009). https://doi.org/10.1029/2009GL037580.[5] G.A. Vecchi, M. Zhao, H. Wang, G. Villarini and others, Statistical-dynamical predictions of seasonal North Atlantic hurricane activity, Mon Weather Rev. 139 (2011) 1070-1082.[6] M.M. Lu, C.T. Lee, B. Wang, Seasonal prediction of accumulated tropical cyclone kinetic energy around Taiwan and the sources of the predictability, Int J Climatol. 33 (2013) 2846-285.[7] P.J. Klotzbach, Revised prediction of seasonal Atlantic basin tropical cyclone activity from 1 August, Weather Forecast 22 (2007) 937-949.[8] F. Vitart, A. Leroy, M.C. Wheeler, A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere, Mon Weather Rev. 138 (2010) 3671-3682.[9] A.Y. Yeung, J.C. Chan, Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific, Clim Dyn. 39 (2012) 783-794.[10] S.J. Camargo SJ, A.G. Barnston, P.J. Klotzbach, C.W. Landsea, Seasonal tropical cyclone forecasts, WMO Bull. 56 (2007) 297-309.[11] J.C.L. Chan, J.E. Shi, C.M. Lam, Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea, Wea Forecast. 13 (1998) 997-1004.[12] F. Vitart, T.N. Stockdale, Seasonal forecasting of tropical storms using coupled GCM integrations, Mon Weather Rev. 129 (2001) 2521-253.[13] F. Vitart, J.L. Anderson, W.F. Stern, Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations, J Clim. 10 (1997) 745-76.[14] S. Yokoi, Y.N. Takayabu, J.C.L Chan, Tropical cyclone genesis frequency over the western North Pacific simulated in mediumresolution coupled general circulation models, Clim Dyn. 33 (2009) 665-683.[15] W.A. Landman, A. Seth, S.J. Camargo, The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the Southwestern Indian Ocean, J Clim. 18 (2005) 1263-1274.[16] Bengtsson, L. H. Bottger, and M. Kanamitsu, Simulation of hurricane-type vortices in a general circulation model, Tellus. 34 (1982) 440-457.[17] Bengtsson, M. Botzet, and M. Esch, Hurricane-type vortices in a general circulation model, Tellus. 47A (1995) 175-196.[18] K. Walsh Objective Detection of Tropical Cyclones in High-Resolution Analyses, Mon. Wea. Rev. 125 (1997) 1767-1779.[19] K. Walsh., and I. G. Watterson, Tropical Cyclone-like Vortices in a Limited Area Model: Comparison with Observed Climatology, J. Climate. 10 (1997) 2204-2259.[20] K.C. Nguyen, K.J.E. Walsh, Interannual, decadal, and transient greenhouse simulation of tropical cyclone-like vortices in a regional climate model of the South Pacific, J Clim 14 (2001) 3043-3054.[21] S.J. Camargo and S. E. Zebiak, Improving the Detection and Tracking of Tropical Cyclones in Atmospheric General Circulation Models, Wea. Forecasting 17 (2002) 1152-1162.[22] J.L. McGregor, C-CAM: Geometric aspects and dynamical formulation. CSIRO Atmospheric Research Technical Paper, No. 70 (2005).[23] J.L. McGregor and M.R. Dix, The CSIRO conformal-cubic atmospheric GCM. In: Hodnett PF (ed) IUTAM symposium on advances in mathematical modelling of atmosphere and ocean dynamics. Kluwer, Dordrecht (2001) 197-202.[24] J.L. McGregor and M.R. Dix, An updated description of the Conformal-Cubic Atmospheric Model. In: Hamilton K, Ohfuchi W(eds) High resolution simulation of the atmosphere and ocean, Springer, New York, (2008) 51-76.[25] M.D. Schwarzkopf and V. Ramaswamy, Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: a GCM experiment, J Geophys Res. 104 (1999) 9467-9488.[26] L.D. Rotstayn, A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: description and evaluation of the microphysical processes, Q J R Meteorol Soc. 123 (1997) 1227-1282.[27] L.D. Rotstayn and Lohmann U, Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme, J Geo Res. 27 (2002).[28] J.L. McGregor, H.B. Gordon, I.G. Watterson, M.R. Dix and L.D. Rotstayn, The CSIRO 9-level atmospheric general circulation model. CSIRO Division of Atmospheric Research Technical Paper, No. 26 (1993).[29] J.L. McGregor, A new convection scheme using a simple clo-sure. In: current issues in the parameterization of convection, BMRC Res Rep. 93 (2003) 33-36.[30] F. Schmidt, Variable fine mesh in spectral global model, Beitraege zur Physik der Atmosphaere. 50 (1977) 211-217.[31] P.V. Tan, T. T. Long, B. H. Hai, and C. Kieu, Seasonal forecasting of tropical cyclone activity in the coastal region of Vietnam using RegCM4.2, Clim. Res. 62 (2015) 115-129. https://doi.org/10. 3354/cr01267.
    African easterly jet
    Tracking (education)
    Tropical cyclogenesis
    長期の再現期間を想定した台風被害予測を行うために,少数の観測台風資料の統計特性から多数の台風資料を作成することが可能な時系列相関型の全球確率台風モデル(GSTM)を作成した.確率台風モデルの精度は台風特性値とその時間変化率に関する結合PDFの近似方法に依存しており,主成分分析とクラスター分析を用いた近似法により,中心気圧や進行方位といった台風特性値の再現性が向上することを明らかにした.また,新しく開発したGSTMを観測結果と比較して,その精度検証を行った.GSTMにより得られた台風資料から作成した各台風特性値の確率分布は,北西太平洋において観測資料のそれとよく一致しており,本確率台風モデルの有用性が示された.
    Tropical cyclogenesis
    African easterly jet
    Citations (3)
    A barotropic prirnitive equation model is used to simulate the tropical cyclone motion.Tropical cyclonemovements under different environmental flow backgrounds were examined and sensitivity of tropical cyclonetracks were discussed.Conclusions of practical significance have been obtained in this paper.
    Barotropic fluid
    Environmental flow
    Tropical cyclogenesis
    Citations (0)
    Работа посвящена разработке геофизической модельной функции (ГМФ), позволяющей в отличие от традиционных методов восстанавливать два параметра приводного пограничного атмосферного слоя: скорость ветра на высоте 10 м и скорость трения -на основе РСА-изображений (радары с синтезированной апертурой, англ.Synthetic Aperture Radar -SAR), полученных на перекрёстной поляризации с помощью инструмента C-SAR, базирующегося на спутниках Sentinel-1A/B, для режима обзора IW (англ.Interferometric Wide swath, интерферометрический широкозахватный).Для конструирования предложенной ГМФ РСА-изображения были совмещены с измерениями микроволнового радиометра SFMR (англ.Stepped Frequency Microwave Radiometer).Анализ проводился для спутниковых изображений шести ураганов (категории по шкале ураганов Саффира -Симпсона (англ.Saffir-Simpson Hurricane wind Scale -SSHS)): Ирма (англ.Irma, категория 5), Мария (англ.Maria, категория 5), Гермина (англ.Hermine, категория 1), Ларри (англ.Larry, категория 3), Дориан (англ.Dorian, категория 5), Дельта (англ.Delta, категория 4).В основе создания ГМФ лежит предложенный ранее авторами подход, который основан на калибровке излучательной способности поверхности океана, полученной по измерениям SFMR, на данные о параметрах пограничного слоя атмосферы, полученные по информации с GPS-зондов (англ.Global Positioning System, система глобального позиционирования).Предложенная ГМФ пригодна для восстановления скорости для умеренных ветров величиной от 15 м/c и вплоть до экстремальных значений порядка 69 м/c для двух первых субполос снимка и до значений 40 м/с для третьей субполосы снимка, скорости трения могут быть восстановлены в диапазоне от 0,8 до 1,7 м/c для всех субполос.Продемонстрировано, что в части восстановления скорости ветра на высоте 10 м результаты расчётов в рамках предложенной ГМФ хорошо согласуются с геофизической модельной функцией MS1A, при этом предельные значения восстанавливаемых скоростей оказываются выше для двух первых субполос.
    Microwave radiometer
    Puacc reoonmg burdsn lof this colieaion o( inlonnaiion >s asInnaiAO to av«rag« i tiour par response, inciuaing ine time lor reviewing tisirucnons. searcmng eiisiing aai* sources, gatnenng «na mamtaiturig ttie data rw«3eO. »nd coiTctoting«rKJ reviewrigthe co«oaiori o( iriloriTutiori. Serid eorrwnerns regmrairigtni« burd lor roduang this bufdeiv to Washington Headquarters Services. Direaorato lor inlormalion Ooeraiions and Reoons. 1215 JeHerson Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the OHiea ol Management and Budget. Papewiork Redudion Projea (0704-0186). Washington. DC 20503.
    Tropical cyclone scales
    Citations (9)
    This paper deals almost entirely with beneficial rains. Records of drought severity in the climatic divisions of the states are examined. The rainfall data from tropical cyclones which have moved over drought-stricken areas are used to tabulate in graphical form the ones which have been most beneficial. Other benefits which have, on occasion, been derived from the tropical cyclone are enumerated.
    Tropical cyclone scales