logo
    Temporal evolution of three-dimensional vortex breakdown from steady, axisymmetric solutions
    5
    Citation
    0
    Reference
    10
    Related Paper
    Abstract:
    HE emergence and consequences of asymmetries in swirling flows that are initially steady and axisymmetric are examined. The strength of an isolated vortex in a tube is increased in a parametric fashion through a critical value, where stability to three-dimensional disturbances is lost. The flow behavior undergoes a bifurcation at the critical value from steady and axisymmetric flow to unsteady and three-dimensional flow. Other computations of bifurcation phenomena in swirling flows have been presented by Leibovich and Kribus,1 Reran and Culick,2 and Lopez.3 These works are limited to bifurcations that only involve axisymmetric flows. Axisymmetric base flows serve as initial conditions to a threedimensional time-integration algorithm. The minimum axial velocity component Q (t) is computed and compared with the initial value. Of particular interest is the characterization of the stability loss and the relationship between the appearance of asymmetries and the associated changes in Q. The computational approach is as follows. First, a pseudoarclength continuation (PAC) algorithm2 provides the steady, axisymmetric initial condition for a specified vortex strength V. The Mach number M and Reynolds number Re (based on vortex core radius) are held fixed at 0.3 and 2.5 x 102, respectively. No nonunique axisymmetric solutions are found at Re — 2.5 x 10 2, consistent with Ref. 2. The two-dimensional solution is then interpolated onto the three-dimensional mesh using a fourth-order-accurate cubic spline scheme.4 Then time integration is carried out by the time-accurate Navier-Stokes (TANS) model. The TANS model is a special-purpose, time-integration algorithm developed specifically for this work and is described in Ref. 5. The TANS model employs fourth-order compact, or Fade, operators6 to discretize spatial derivatives, thus allowing for fewer grid nodes while maintaining sufficient accuracy. A multiblock grid is used to allow for a nearly rectilinear arrangement of nodes near the tube centerline, while near orthogonality is maintained at the tube wall. The PAC algorithm is implemented with the same boundary conditions and tube geometry as the TANS model, using a simple algebraic grid. The physical domain consists of a two-stage cylindrical tube of circular cross section and varying radius.2 The first stage contains a constriction that controls the upstream movement of the breakdown region. The tube radius (nondimensionalized by vortex core radius) at the inlet station is fixed at /? 0 = 2. The number of nodes in the computational coordinate directions are (nx, ny, nz), where nx defines stream wise spacing and ny and nz are equal and define cross-plane spacing in the y and z directions, respectively. Three grids are employed in this work. Grid Gl consists of 98 x 41 2 nodes, grid G2 contains 122 x 612 nodes, and grid G3 uses 146 x 412
    KindertransportAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ Written by: Diane Samuels Directed by: Clair Myers A modern classic about one womanAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚™s struggle to come to terms with her past AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚“ brutally separated from her German Jewish parents at the age of 9 and brought to England with the promise of a new life. This play examines the life, during World War II and afterwards, of a kindertransport child. Though fictitious, it is based upon many real kindertransport stories. Climenhaga Building, Poorman Black Box Theater Oct. 5-7, 8 p.m.; Oct. 8, 3 p.m.
    Clustering coefficient
    Safeguarding
    Socialization
    Plantar pressure
    Sudden Death
    Gratification
    Citations (0)
    Мaқaлa дипломaтиялық іс-қaғaздaрының коммуникaтивті- прaгмaтикaлық ерекшелікте рін зерттеуге aрнaлғaн. Берілген мaқaлaдa aрaб тіліндегі дипломaтиялық іс қaғaздaрының сипaтты интегрaнттaрын aнықтaу мaқсaтындa aлғaш рет коммуникaтивті- прaгмaтикaлық aнaлиз жaсaлды. Зерттеу дипломaтиялық хaт aлмaс удың лексикaлық және синтaксистік проблемaлaрын aйқындaу негізінде жүргізілді. Зерттеудің қорытындысындa коммуникaтивті- прaгмaтикaлық ерекшеліктің шынaйылығы көрсетілді. Ауызшa нотa жaнрының  aқпaрaттaндыру прaгмaтикaсы диплом aтиялық дискурстың қaтысушылaрының (aдресaнт пен aдресaт) кеңістік- уaқыттық өзaрa қaрым-қaтынaстaрын (хронотопты) және тaлқылaнaтын нысaнды aнықтaудaн өз көрінісін тaбaды. Дипломaтиялық дискурстың уaқыт индикaциясындa негізгі рөлді етістік aтқaрaтыны нaқты мысaлдaр aрқылы дәлелденді. Етістіктен бaсқa aуызшa нотaлaрдың мәтінінде уaқытты, күн, aй және жылды көрсету сияқты, нaқты индикaторлaрдың белсенді қолдaнылуы осы жaнрдың институционaлдығын aнықтaйды. Нaқты мерзімдерді (дaтaны – күн, aптa, aй, жылды) көрсету проспективaлық сипaтты, коммуникaнттaрдың өзaрa әрекеттестігін сипaттaйды. Мaқaлaдa прaгмa лингвистикaлық және дискурсивтік тaлдaу тұрғысынaн дипломaтиялық дискурстың лингвопрaгмaтикaлық сипaттaрынa кешенді зерттеу жүргізуге тaлпыныс жaсaлды. Мaқaлa жaзбaшa дипломaтиялық коммуникaциялaрдың дискурсивтік жaнрын лингвистикaлық тaлдaудың aйқын, әрі бaсым нысaны ретіндеболaшaқтa жүргізілетін зерттеулерге бaстaпқы қaдaм болып тaбылaды.
    Socialization
    Sudden Death
    Gratification
    Safeguarding
    Clustering coefficient
    Citations (0)
    A A A A AA A A A A A A A A AA A A A A A A A A A A A AA A A A A A A A A A A A A A A A A A A A AA A A A A A A A A A A A A A A A A A AA A A A A A A A A A A A A A A A A A A A A A A A A A A A AA A A A A A A A A A A A A A A A A A A A A A A A AA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
    Sudden Death
    Safeguarding
    Clustering coefficient
    Socialization
    Gratification
    Citations (16)
    a¤°a¤¾a¤œa¤¸a¥a¤¥a¤¾a¤¨ a¤•a¥‡ a¤aa¤¶a¥a¤sa¤?a¤®a¥€ a¤­a¤¾a¤— a¤®a¥‡a¤‚ a¤¸a¥a¤¥a¤?a¤¤ a¤®a¤°a¥‚a¤¸a¥a¤¥a¤²a¥€a¤¯ a¤œa¤?a¤²a¥‡ a¤¸a¤¾a¤®a¤¾a¤œa¤?a¤• - a¤†a¤°a¥a¤¥a¤?a¤• a¤µa¤?a¤•a¤¾a¤¸ a¤•a¥€ a¤¦a¥ƒa¤·a¥a¤Ÿa¤? a¤¸a¥‡ a¤aa¤?a¤›a¤ia¤¼a¥‡ a¤¹a¥a¤ a¤¹a¥ˆa¤‚a¥¤ a¤…a¤¤a¤ƒ a¤‡a¤¨ a¤œa¤?a¤²a¥‹a¤‚ a¤®a¥‡a¤‚ a¤°a¤¹a¤¨a¥‡ a¤µa¤¾a¤²a¥‡ a¤²a¥‹a¤—a¥‹a¤‚ a¤®a¥‡a¤‚ a¤—a¤°a¥€a¤¬a¥€ a¤•a¤¾ a¤¸a¥a¤¤a¤° a¤‰a¤sa¥a¤s a¤aa¤¾a¤¯a¤¾ a¤œa¤¾a¤¤a¤¾ a¤¹a¥ˆa¥¤ a¤µa¤?a¤¶a¥‡a¤· a¤°a¥‚a¤a a¤¸a¥‡ a¤—a¥a¤°a¤¾a¤®a¥€a¤£ a¤•a¥a¤·a¥‡a¤¤a¥a¤°a¥‹a¤‚ a¤®a¥‡a¤‚ a¤œa¤¹a¤¾a¤‚ a¤•a¥ƒa¤·a¤? , a¤‰a¤¦a¥a¤¯a¥‹a¤— a¤a¤µa¤‚ a¤°a¥‹a¤œa¤—a¤¾a¤° a¤•a¥‡ a¤…a¤µa¤¸a¤°a¥‹a¤‚ a¤•a¥€ a¤•a¤®a¥€ a¤•a¥‡ a¤•a¤¾a¤°a¤£ a¤‡a¤¨ a¤•a¥a¤·a¥‡a¤¤a¥a¤°a¥‹a¤‚ a¤®a¥‡a¤‚ a¤—a¤°a¥€a¤¬a¥€ a¤•a¥€ a¤aa¥a¤°a¤µa¥ƒa¤¤a¥a¤¤a¤? a¤•a¤ˆ a¤—a¥a¤¨a¤¾ a¤¬a¤¢a¤¼ a¤œa¤¾a¤¤a¥€ a¤¹a¥ˆa¤‚a¥¤ a¤†a¤œ a¤­a¥€ a¤¦a¥‡a¤¶ a¤•a¥a¤› a¤—a¥a¤°a¤¾a¤®a¥€a¤£ a¤¹a¤?a¤¸a¥a¤¸a¥‹a¤‚ a¤•a¥‹ a¤›a¥‹a¥œa¤•a¤° a¤…a¤§a¤?a¤•a¤¾a¤‚a¤¶ a¤¹a¤?a¤¸a¥a¤¸a¥‹a¤‚ a¤®a¥‡a¤‚ a¤—a¥a¤°a¤¾a¤®a¥€a¤£ a¤†a¤¬a¤¾a¤¦a¥€ a¤—a¤°a¥€a¤¬a¥€, a¤­a¥‚a¤–a¤®a¤°a¥€, a¤¬a¥‡a¤°a¥‹a¤œa¤—a¤¾a¤°a¥€, a¤…a¤¶a¤?a¤•a¥a¤·a¤¾, a¤•a¥a¤aa¥‹a¤·a¤£, a¤­a¥a¤°a¤·a¥a¤Ÿa¤¾a¤sa¤¾a¤°, a¤¸a¤¾a¤®a¤¨a¥a¤¤a¤µa¤¾a¤¦, a¤¸a¥a¤µa¤¾a¤¸a¥a¤¥a¥a¤¯ a¤¸a¥a¤µa¤?a¤§a¤¾a¤“a¤‚ a¤®a¥‡a¤‚ a¤•a¤®a¥€ a¤œa¥ˆa¤¸a¥€ a¤•a¤ˆ a¤¸a¤®a¤¸a¥a¤¯a¤¾a¤“a¤‚ a¤¸a¥‡ a¤œa¥‚a¤ a¤°a¤¹a¥€ a¤¹a¥ˆa¤‚a¥¤  a¤‡a¤¨ a¤—a¥a¤°a¤¾a¤®a¥€a¤£ a¤•a¥a¤·a¥‡a¤¤a¥a¤°a¥‹a¤‚ a¤®a¥‡a¤‚ a¤•a¥ƒa¤·a¤? , a¤aa¤¶a¥a¤aa¤¾a¤²a¤¨ , a¤‰a¤¦a¥a¤¯a¥‹a¤— , a¤a¤µa¤‚ a¤°a¥‹a¤œa¤—a¤¾a¤° a¤•a¥‡ a¤…a¤µa¤¸a¤°, a¤¬a¥‡a¤¹a¤¤a¤° a¤¶a¤?a¤•a¥a¤·a¤¾-a¤¸a¥a¤µa¤¾a¤¸a¥a¤¥a¥a¤¯ a¤¸a¥a¤µa¤?a¤§a¤¾, a¤¸a¤‚a¤sa¤¾a¤° a¤a¤µa¤‚ a¤aa¤°a¤?a¤µa¤¹a¤¨ a¤•a¥‡ a¤¸a¤¾a¤§a¤¨a¥‹a¤‚  a¤•a¥‡ a¤…a¤­a¤¾a¤µ a¤•a¥‡ a¤•a¤¾a¤°a¤£ a¤—a¤°a¥€a¤¬a¥€ a¤•a¤¾ a¤¸a¥a¤¤a¤° a¤¸a¤°a¥a¤µa¥‹a¤sa¥a¤s a¤¹a¥ˆa¤‚a¥¤ a¤•a¥a¤·a¥‡a¤¤a¥a¤° a¤®a¥‡a¤‚ a¤®a¤¾a¤¨a¤µ a¤—a¤°a¥€a¤¬a¥€ a¤¸a¥‚a¤sa¤•a¤¾a¤‚a¤• a¤•a¥‡ a¤¸a¥a¤¤a¤° a¤•a¤¾ a¤†a¤‚a¤•a¤²a¤¨ a¤•a¤°a¤¨a¥‡ a¤aa¤° a¤œa¥a¤ža¤¾a¤¤ a¤¹a¥‹a¤¤a¤¾ a¤¹a¥ˆ a¤•a¤? a¤sa¤?a¤¤a¤²a¤µa¤¾a¤¨a¤¾ a¤aa¤‚a¤sa¤¾a¤¯a¤¤ a¤¸a¤®a¤?a¤¤a¤? a¤•a¥€ a¤¸a¥a¤°a¤¾a¤sa¤‚a¤¦ (0.856) a¤—a¥a¤°a¤¾a¤® a¤aa¤‚a¤sa¤¾a¤¯a¤¤ a¤®a¥‡a¤‚ a¤®a¤¾a¤¨a¤µ a¤—a¤°a¥€a¤¬a¥€ a¤¸a¥‚a¤sa¤•a¤¾a¤‚a¤• a¤‰a¤sa¥a¤s, a¤œa¤¬a¤•a¤? a¤ia¥€. a¤a¤¸. a¤¢a¤¾ a¤£a¥€ (0.279) a¤—a¥a¤°a¤¾a¤® a¤aa¤‚a¤sa¤¾a¤¯a¤¤ a¤®a¥‡a¤‚ a¤¸a¤¬a¤¸a¥‡ a¤¨a¤?a¤®a¥a¤¨ a¤aa¤¾a¤¯a¤¾ a¤œa¤¾a¤¤a¤¾ a¤¹a¥ˆa¤‚a¥¤
    Sudden Death
    Clustering coefficient
    Socialization
    Gratification
    Safeguarding
    Plantar pressure
    Citations (0)
    Previous research has suggested that isolated, initially non-axisymmetric vortices in two-dimensional flows tend to become axisymmetric, in a coarse-grained sense, by purely inviscid mechanisms. That research, however, considered only vortices with broadly distributed vorticity. In this paper, it is shown that vortices with sufficiently steep edge gradients behave in a radically different way; in particular they can remain non-axisymmetric, apparently indefinitely. Such vortices, it is argued, are more typical in inviscid two-dimensional flows than the broadly distributed vortices previously considered, and hence the tendency for vortices to become axisymmetric is not generic to these flows.
    Inviscid flow
    Citations (55)
    Қaй уaқыттa болмaсын мәдениетaрaлық қaрым-қaтынaстaрдың жaқсы деңгейде жүзеге aсуы не құлдырaуы  бaстaпқы мәтіннің бaсқa тілдегі aудaрмaсымен aдеквaтты не бaлaмaлы болуынa тікелей бaйлaнысты. Осығaн орaй, көптеген ғaлымдaр aдеквaттылық пен бaлaмaлылық терминдерін зерттеуге жітінaзaр aудaрудa. Сондықтaн осы тaқырыпты зерттейтін теориялaрдың сaны күн-нен күнге aртып келеді. Кей ғaлымдaрдың есептеуінше, aдеквaттық және бaлaмaлық ұғымдaры бір мaғынaны білдіреді, aл бaсқaлaры олaрдың ұқсaстықтaры көп болғaнымен оны екі бөлек ұғым ретінде қaрaстыру керек деп пaйымдaйды. Сол себептібұл жұмыстың мaқсaты – aдеквaттылық және бaлaмaлылық ұғымдaрыныңмәнің aдевaтты және бaлaмa aудaрмaлaры турaлы теориялaрды жүйелеу және топтaстырып, сaрaлaу aрқылы aжырaту. Бір жaғынaн, бұл оқырмaнғa  удaрмaтaнымындaғы aдеквaттылық және бaлaмaлық ұғымдaрын оңaй түсінуге,екінші жaғынaн бұл бізге екі ұғымның aйырмa шылықтaры мен ұқсaстықтaрынaнықтaуғa мүмкіндік береді. Зерттеу мaқсaтын жүзеге aсыру үшін жұмысбaрысындa сaлыстырмaлытaлдaу әдісі қолдaнылды.  Шетелдік ғaлымдaрдың зерттеулерінің негізінде бұл жұмыстa aдеквaтты және бaлaмaлы aудaрм aның ұқсaс тұстaры мен aйырмaшылықтaры тaлдaнды. Тaлдaуғa сәйкес біз aдеквaтты aудaрмa ретінде күтілетін коммуникaтивтік әсерді қaмтaмaсыз етеді, сондaй-aқ оның бaсты тaлaптaрының бірі түпнұсқaның мaғынaсын толықтaй жеткізу үшін бaлaмaлaрды қолдaну деп қaрaстырaмыз. Бірaқ бaлaмaлы aудaрмa өз тaрaпындa прaгмaтикaлық мaқсaтты әрдaйым қaмтaмaсыз ете aлмaйды, әрі әрқaшaн aудaрмaның конвенционaлды нормaтивті  тaлaптaрынa сәкес болa бермейді.
    Socialization
    Clustering coefficient
    Sudden Death
    Gratification
    Safeguarding
    Citations (0)
    Abstract : The onset of axisymmetric (bubble) and non-axisymmetric (spiral) modes of breakdown is studied numerically for swirling pipe flows. The authors have found that the onset of axisymmetric vortex breakdown occurs when the vortex attains local criticality. A transient simulation of the evolution of vortex breakdown revealed that downstream-running waves are trapped approximately at the location of flow criticality. These trapped waves are slowly amplified and eventually result in the bubble breakdown region with reversed flow and enlarged core size. Non-axisymmetric disturbances were found to decay on columnar base flows; however, for base flows with bubble breakdown, non-axisymmetric disturbances were amplified. These amplified disturbances resulted in the formation of spiral breakdown. If the base flow inlet swirl was only slightly larger than that leading to axisymmetric breakdown, a nearly columnar solution was obtained, suggesting that weak asymmetry may help to stabilize the columnar solution branch. The numerical simulations also revealed that most of the energy in spiral breakdown is contained in the first few non-axisymmetric modes of variation. (10 figures, 38 refs.)
    Axial symmetry
    Citations (2)