Regulation of gold nanoparticles for the rare earth luminescence enhancement based on nanoporous silica glass
Yunxiu MaChen ZhangruYingbo ChuYang YuYongguang LiuHaiqing LiJinggang PengNengli DaiJinyan LiLüyun Yang
16
Citation
36
Reference
10
Related Paper
Citation Trend
Keywords:
Nanoporous
Nanopore
Nanopore
Cite
Citations (21)
Gold nanoparticles hold unique optical and electronic properties and have been extensively applied as optical and electrochemical labels for DNA and protein detection. The nanopore based analysis of gold nanoparticles will provide us good insight for further study the conjugation of nanoparticles and DNA. In the present work, we demonstrated gold nanoparticles translocation through silicon nitride (SiN) nanopore via investigation of distribution of current blockage and dwell time of gold nanoparticles with different sizes, 10 nm and 15 nm respectively. 100 mM KCl solution with 0.075% Triton X-100 and 5 mM Tris was used to avoid the aggregation of negatively charged gold nanoparticles caused by van der Waals force. Nanopore based on SiN membrane was fabricated by current dielectric breakdown technology, and the diameter of the nanopore was calculated from an empirical equation, which is 18 nm. Experimental data was analyzed via Clampfit, version 10.6.0.13, and Origin 8 (OriginLab).
Nanopore
Dwell time
Cite
Citations (2)
For the application of high-surface-area nanoporous platinum (Pt) to catalytic device, electrodes and sensors, dealloying technique, which can synthesize nanoporous Pt, was combined with surface alloying technique. As a result, nanoporous structure with ligament and pore sizes below 10 nm was successfully fabricated on the Pt plate surface. Cyclic voltammetry in H2SO4 indicated that the nanoporous structure increases the true surface area by 170 times. The approximation by spherical pore model suggested that the nanoporous surface layer has a thickness of 200 nm.
Nanoporous
Surface structure
Cite
Citations (4)
Selective detection of attomolar proteins was achieved using gold lined nanopores in a nanopore blockade sensor.
Nanopore
Protein detection
Cite
Citations (29)
Nanopore
Cite
Citations (1)
To slow the translocation of single-stranded DNA (ssDNA) through a solid-state nanopore, a nanopore was narrowed, and the effect of the narrowing on the DNA translocation speed was investigated. In order to accurately measure the speed, long (5.3 kb) ssDNA (namely, ss-poly(dA)) with uniform length (±0.4 kb) was synthesized. The diameters of nanopores fabricated by a transmission electron microscope were controlled by atomic-layer deposition. Reducing the nanopore diameter from 4.5 to 2.3 nm slowed down the translocation of ssDNA by more than 16 times (to 0.18 μs base(-1)) when 300 mV was applied across the nanopore. It is speculated that the interaction between the nanopore and the ssDNA dominates the translocation speed. Unexpectedly, the translocation speed of ssDNA through the 4.5 nm nanopore is more than two orders of magnitude higher than that of double-stranded DNA (dsDNA) through a nanopore of almost the same size. The cause of such a faster translocation of ssDNA can be explained by the weaker drag force inside the nanopore. Moreover, the measured translocation speeds of ssDNA and dsDNA agree well with those calculated by molecular-dynamics (MD) simulation. The MD simulation predicted that reducing the nanopore diameter to almost the same as that of ssDNA (i.e. 1.4 nm) decreases the translocation speed (to 1.4 μs base(-1)). Narrowing the nanopore is thus an effective approach for accomplishing nanopore DNA sequencing.
Nanopore
Cite
Citations (66)
3D nanoporous graphene shows excellent physics and electrochemical performance in the fields of energy storage and conversion due to its high-quality and unique interconnected structure. Nanoporous metals, especially nanoporous Ni and nanoporous Cu, have high catalysis for the synthesis of high-quality 3D nanoporous graphene. This chapter presents an overview of the most recent research about the 3D nanoporous graphene, heteroatoms-doped nanoporous graphene, and the nanoporous graphene-based composite materials synthesized by using nanoporous Ni and nanoporous Cu.
Nanoporous
Heteroatom
Cite
Citations (0)
Using nanopores for single-molecule sequencing of proteins - similar to nanopore-based sequencing of DNA - faces multiple challenges, including unfolding of the complex tertiary structure of the proteins and enforcing their unidirectional translocation through nanopores. Here, we combine molecular dynamics (MD) simulations with single-molecule experiments to investigate the utility of SDS (Sodium Dodecyl Sulfate) to unfold proteins for solid-state nanopore translocation, while simultaneously endowing them with a stronger electrical charge. Our simulations and experiments prove that SDS-treated proteins show a considerable loss of the protein structure during the nanopore translocation. Moreover, SDS-treated proteins translocate through the nanopore in the direction prescribed by the electrophoretic force due to the negative charge impaired by SDS. In summary, our results suggest that SDS causes protein unfolding while facilitating protein translocation in the direction of the electrophoretic force; both characteristics being advantageous for future protein sequencing applications using solid-state nanopores.
Nanopore
Transport protein
Cite
Citations (71)
Nanopores offer the potential for label-free analysis of individual proteins and low cost DNA sequencing. In order to design and evaluate nanopore devices, an understanding of nanopore electrokinetic transport is crucial. However, most studies of nanopore electrokinetic transport have neglected the effects of concentration polarization (CP) in the bulk fluid surrounding the pore. In this paper, we present a computational model which demonstrates the effects of CP on the background electrolyte in nanopore devices with tip diameters of 40–100 nm. We also present direct experimental observation of the distribution of an anionic dye in the vicinity of a conical nanopore. These results indicate that CP in a nanopore system can affect concentration distributions in the bulk solution tens of microns away from the pore, suggesting that typical boundary conditions used to model nanopore electrokinetic transport are incomplete.
Nanopore
Nanofluidics
Cite
Citations (0)
Abstract Nanopore is a single‐molecule analysis method which also employed electrophoresis has achieved promising single‐molecule detections. In this study, we designed two kinds of confined spaces by fabricating solid‐state nanopores with desirable diameters to study the structured single‐strand DNA of C‐rich quadruplex. For the nanopore whose diameter is larger than the quadruplex size, the DNA molecule could directly translocate through the nanopore with extremely high speed. For the nanopore whose diameter is smaller than the quadruplex size, DNA molecule which is captured by nanopore could return to the solution without translocation or unzip the quadruplex structure into single‐strand and then pass the nanopore. This study certifies that choosing a suitable sensing interface is the vital importance of observing detailed single‐molecule information. The solid‐state nanopores hold the great potential to study the structural dynamics of quadruplex DNA molecule.
Nanopore
G-quadruplex
Cite
Citations (7)