logo
    Single-Sensor Identification of Multi-source Vibration Faults Based on Power Spectrum Estimation with Application to Aircraft Engines
    0
    Citation
    7
    Reference
    10
    Related Paper
    Mode (computer interface)
    Urban rail
    Urban rail transit
    SIGNAL (programming language)
    Instantaneous phase
    Passenger train
    Ensemble Empirical Mode Decomposition (EEMD) can overcome the mode mixing problem in Empirical Mode Decomposition (EMD) effectively. The Hilbert-Huang transform still exists end effect in applications, in order to improve the end effect, this paper put forward a method of fault feature extraction based on improved EEMD and Hilbert transform which combines support vector regression (SVR) machine with mirror extension to continue the signal. The analysis on simulation experiments results show that the method can restrain the end effect effectively, get a more accurate instantaneous frequency and instantaneous amplitude.
    Instantaneous phase
    Mode (computer interface)
    S transform
    SIGNAL (programming language)
    Feature (linguistics)
    The Empirical Mode Decomposition (EMD) is a new adaptive signal decomposition method, which is good at handling many real nonlinear and nonstationary one dimensional signals. It decomposes signals into a a series of Intrinsic Mode Functions (IMFs) that was shown having better behaved instantaneous frequencies via Hilbert transform (The EMD and Hubert spectrum analysis together were called Hilbert-Huang Transform (HHT) which was proposed by N.E. Huang et al, in.). For the advanced applications in image analysis, the EMD was extended to the bidimensional EMD (BEMD). However, most of the existed BEMD algorithms are slow and have unsatisfied results. In this paper, we firstly proposed a new BEMD algorithm which is comparatively faster and better-performed. Then we use the Riesz transform to get the monogenic signals. The local features (amplitude, phase orientation, phase angle, etc) are evaluated. The simulation results are given in the experiments.
    Instantaneous phase
    Hilbert spectral analysis
    Mode (computer interface)
    SIGNAL (programming language)
    Hilbert spectral analysis
    Instantaneous phase
    S transform
    SIGNAL (programming language)
    Citations (2)
    Hilbert-Huang Transform(HHT) is a new two-step time-frequency analytic method to analyze the non-linear and non-stationary signal.The key step of this method is empirical mode decomposition(EMD) method with which any complicated data set can be decomposed into several Intrinsic Mode Function(IMF) components.Using Hilbert transform to those IMF components can yield instantaneous frequency.The empirical mode decomposition(EMD) can be interpreted as a temporal and spatial filtering based on the signal's extremum characteristic scale.This method preserves the nonlinearity and non-stability of signal,and has potential superiority in filtering and de-noising. The experimental results clarify the advance and efficient of this method.
    Instantaneous phase
    Hilbert spectral analysis
    SIGNAL (programming language)
    Mode (computer interface)
    Analytic signal
    Citations (0)
    Hilbert spectral analysis
    Mode (computer interface)
    SIGNAL (programming language)
    Instantaneous phase
    Citations (7)
    Nonlinear and non-stationary signal processing has been always a hot issue.Hilbert-Huang transform is a new signal processing method,which can get the time-frequency-energy distribution characteristics of the signals through the empirical mode decomposition(EMD) and Hilbert transform.But when it is in application,the results gained are not very precise,some improvements are proposed,and it proved feasibility and useful through MATLAB simulation.
    Hilbert spectral analysis
    SIGNAL (programming language)
    Instantaneous phase
    S transform
    Energy distribution
    Mode (computer interface)
    Citations (1)
    The nationally-recognized Susquehanna Chorale will delight audiences of all ages with a diverse mix of classic and contemporary pieces. The ChoraleAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚™s performances have been described as AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚œemotionally unfiltered, honest music making, successful in their aim to make the audience feel, to be moved, to be part of the performance - and all this while working at an extremely high musical level.AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚¢AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚€AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚ƒAƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚ƒAƒÂƒA‚‚AƒÂ‚A‚‚AƒÂƒA‚ƒAƒÂ‚A‚‚AƒÂƒA‚‚AƒÂ‚A‚ Experience choral singing that will take you to new heights!
    Citations (0)