The Structure and Biology of Schizoneura lanigera, Hausmann or Woolly Aphis of the Apple Tree: Part I.—The Apterous Viviparous Female
5
Citation
7
Reference
10
Related Paper
Infectivity
Cite
Citations (38)
The ubiquity of sexual reproduction among plants and animals remains one of the major unresolved paradoxes of modern evolutionary biology. In order for sex to be maintained in populations, sex must confer immediate and substantial fitness benefits. Theoreticians have proposed numerous mechanisms to explain how such advantages arise, but experimental data are few. In one well-studied population of the perennial grass Anthoxanthum odoratum in a mown North Carolina field, sexual offspring have been found to have significantly higher fitness than asexual offspring. More recent field experiments show that an aphid-transmitted virus, barley yellow dwarf (BYDV)-strain SGV, specifically transmitted by Schizaphus graminum , frequently infects Anthoxanthum progeny soon after transplantation into the field, BYDV infection is asymptomatic in Anthoxanthum , but BYDV-inoculated clones planted directly in the field had significantly lower fitness than healthy controls. Sexual females have been hypothesized to gain a fitness advantage for their offspring in the presence of pathogens either by providing ‘an escape in time’ from pathogens preadapted to the parental genotype or through the production of rare genotypes, which escape frequency-dependent infection. When parental clones and seed-derived sexual offspring were planted in identical but separate arrays in sites near where the parent was collected, parental clones were twice as frequently infected as sexual offspring. Factors other than genetic variation may have contributed to differences in levels of infection between sexual and asexual progeny: in this experiment, clonally derived asexual offspring tillers were slightly larger than seed-derived sexual tillers; in field experiments, larger plants were more frequently infected than smaller plants. When different families were planted into a common site, there was evidence that genotypes were less frequently infected when locally rare than when common. Taken together, the data suggest that BYDV infection generates advantages for rare or sexually produced genotypes in Anthoxanthum . The pattern of infection is likely to result from a complex interaction between vector, host, and viral genetics and population structure, vector behaviour, and host and vector dispersal patterns. Sexually produced genotypes appear to benefit because they are both novel and rare, but the observed minority advantage was weak. Other viral, bacterial, and fungal pathogens in this Anthoxanthum population may act as frequency-dependent selective forces in different places in the field, collectively generating the substantial and observed overall fitness advantage of rare genotypes. Further study is needed to elucidate their role. Nevertheless, the data do show that viral pathogens, which are often asymptomatic, play a significant evolutionary role in plant populations.
Sexual reproduction
Asexual reproduction
Cite
Citations (55)
Asexual reproduction
Sexual reproduction
Cite
Citations (40)
Meiosis is critical for sexual reproduction. During meiosis, the dynamics and integrity of homologous chromosomes are tightly regulated. The genetic and molecular mechanisms governing these processes in vivo, however, remain largely unknown. In this study, we demonstrate that Bat3/Scythe is essential for survival and maintenance of male germ cells (GCs). Targeted inactivation of Bat3/Scythe in mice results in widespread apoptosis of meiotic male GCs and complete male infertility. Pachytene spermatocytes exhibit abnormal assembly and disassembly of synaptonemal complexes as demonstrated by abnormal SYCP3 staining and sustained γ-H2AX and Rad51/replication protein A foci. Further investigation revealed that a testis-specific protein, Hsp70-2/HspA2, is absent in Bat3-deficient male GCs at any stage of spermatogenesis; however, Hsp70-2 transcripts are expressed at normal levels. We found that Bat3 deficiency induces polyubiquitylation and subsequent degradation of Hsp70-2. Inhibition of proteasomal degradation restores Hsp70-2 protein levels. Our findings identify Bat3 as a critical regulator of Hsp70-2 in spermatogenesis, thereby providing a possible molecular target in idiopathic male infertility.
Degradation
Cite
Citations (51)
In response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21 . Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53–p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53.
Cite
Citations (125)
Cite
Citations (24)
Holcus lanatus
Cite
Citations (21)
Summary Thermococcales has a strong adaptability to extreme environments, which is of profound interest in explaining how complex life forms emerge on earth. However, their gene composition, thermal stability and evolution in hyperthermal environments are still little known. Here, we characterized the pan‐genome architecture of 30 Thermococcales species to gain insight into their genetic properties, evolutionary patterns and specific metabolisms adapted to niches. We revealed an open pan‐genome of Thermococcales comprising 6070 gene families that tend to increase with the availability of additional genomes. The genome contents of Thermococcales were flexible, with a series of genes experienced gene duplication, progressive divergence, or gene gain and loss events exhibiting distinct functional features. These archaea had concise types of heat shock proteins, such as HSP20, HSP60 and prefoldin, which were constrained by strong purifying selection that governed their conservative evolution. Furthermore, purifying selection forced genes involved in enzyme, motility, secretion system, defence system and chaperones to differ in functional constraints and their disparity in the rate of evolution may be related to adaptation to specific niche. These results deepened our understanding of genetic diversity and adaptation patterns of Thermococcales, and provided valuable research models for studying the metabolic traits of early life forms.
Functional divergence
Negative selection
Cite
Citations (5)
HLA-B-associated transcript 3 (BAT3) was originally identified as one of the genes located within human major histocompatibility complex. It encodes a large proline-rich protein with unknown function. In this study, we found that a fragment of the BAT3 gene product interacts with a candidate tumor suppressor, DAN, in the yeast-based two-hybrid system. We cloned the full-length rat BAT3 cDNA from a fibroblast 3Y1 cDNA library. Our sequence analysis has demonstrated that rat BAT3 cDNA is 3617 nucleotides in length and encodes a full-length BAT3 (1098 amino acids) with an estimated molecular mass of 114,801 daltons, which displays an 87.4% identity with human BAT3. The deletion experiment revealed that the N-terminal region (amino acid residues 1-80) of DAN was required for the interaction with BAT3. Green fluorescent protein-tagged BAT3 was largely localized in the cytoplasm of COS cells. Northern hybridization showed that BAT3 mRNA was expressed in all the adult rat tissues examined but predominantly in testis. In addition, the level of BAT3 mRNA expression was more downregulated in some of the transformed cells, including v-mos- and v-Ha-ras-transformed 3Y1 cells, than in the parental cells.
Cite
Citations (21)
SUMMARY A hitherto unrecorded virus having flexible rod‐shaped particles about 740–760 × 13 nm was isolated from Anthoxanthum odoratwn L. It was transmitted by sap inoculation, but not by several species of insect, seed or soil to 18 species of Gramineae including wheat, oats and barley. In susceptible species the virus normally produced a mosaic mottling of the leaves which was sometimes followed by a necrotic streaking or striping.
Mosaic virus
Cite
Citations (6)