Vascular endothelial function masks increased sympathetic vasopressor activity in rats with metabolic syndrome
Sylvain BattaultCindy MéziatAlessandro NascimentoLaura BraudSandrine GayrardChristian LegrosFrédéric De NardiJocelyne DraiOlivier CazorlaJérôme ThireauGrégory MeyerCyril Reboul
26
Citation
54
Reference
10
Related Paper
Citation Trend
Abstract:
Sympathetic hyperactivation, a common feature of obesity and metabolic syndrome, is a key trigger of hypertension. However, some obese subjects with autonomic imbalance present a dissociation between sympathetic activity-mediated vasoconstriction and increased blood pressure. Here, we aimed to determine in a rat model of metabolic syndrome whether the endothelium endothelial nitric oxide (NO) synthase (eNOS)-NO pathway contributes to counteract the vasopressor effect of the sympathetic system. Rats were fed a high-fat and high-sucrose (HFS) diet for 15 wk. Sympathovagal balance was evaluated by spectral analysis of heart rate variability and plasmatic catecholamine measurements. Blood pressure was measured in the presence or absence of N-nitro-l-arginine methyl ester (l-NAME) to inhibit the contribution of eNOS. Vascular reactivity was assessed on isolated aortic rings in response to α1-adrenergic agonist. The HFS diet increased sympathetic tone, which is characterized by a higher low on the high-frequency spectral power ratio and a higher plasmatic concentration of epinephrine. Despite this, no change in blood pressure was observed. Interestingly, HFS rats exhibited vascular hyporeactivity (-23.6%) to α1-adrenergic receptor stimulation that was abolished by endothelial removal or eNOS inhibition (l-NAME). In addition, eNOS phosphorylation (Ser1177) was increased in response to phenylephrine in HFS rats only. Accordingly, eNOS inhibition in vivo revealed higher blood pressure in HFS rats compared with control rats (147 vs. 126 mmHg for mean blood pressure, respectively). Restrain of adrenergic vasopressor action by endothelium eNOS is increased in HFS rats and contributes to maintained blood pressure in the physiological range. NEW & NOTEWORTHY Despite the fact that prohypertensive sympathetic nervous system activity is markedly increased in rats with early metabolic syndrome, they present with normal blood pressure. These observations appear to be explained by increased endothelial nitric oxide synthase response to adrenergic stimulation, which results in vascular hyporeactivity to α-adrenergic stimulation, and therefore blood pressure is preserved in the physiological range. Listen to this article's corresponding podcast at http://www.physiology.org/doi/10.1152/ajpheart.00217.2017 .Keywords:
Phenylephrine
Sympathetic nervous system
The effects of the prostaglandins (PG) E2, D2 and I2 were studied on the nasal vasculature of the anaesthetized pig. PGD2 caused vasoconstriction followed by a prolonged vasodilation whereas PGI2 only caused vasodilation. The effects of PGE2 were variable with vasoconstriction in 6 out of 7 pigs and vasodilation in 1 pig.
Prostaglandin D2
Cite
Citations (8)
An EtOAc-soluble fraction from a 50 % EtOH extract of the roots of Angelica keiskei inhibited phenylephrine-induced vasoconstriction in rat aortic rings, while an EtOAc-insoluble fraction had no effect at 100 μg/ml. Five active substances isolated from the EtOAc-soluble fraction of the roots were identified as xanthoangelol (1), 4-hydroxyderricin (2), and xanthoangelols B (3), E (4) and F (5), which inhibited phenylephrine-induced vasoconstriction at the concentrations of 10 - 100 μg/ml. It was found that xanthoangelol (1), 4-hydroxyderricin (2), and xanthoangelols E (4) and F (5) inhibited the phenylephrine-induced vasoconstriction through endothelium-dependent endothelium-derived relaxing factor (EDRF) production and/or nitric oxide (NO) production. Among the five chalcones, xanthoangelol B (3) inhibited the phenylephrine-induced vasoconstriction most strongly, and it inhibited the phenylephrine-induced vasoconstriction in the presence or absence of endothelium and in the presence or absence of N G-monomethyl-L-arginine (L-NMMA) (an NO synthetase inhibitor). Furthermore, 4-hydroxyderricin (2) and xanthoangelol B (3) at concentrations of 10 - 100 μg/ml concentration-dependently inhibited the elevation of intracellular free calcium [Ca2+]i induced by phenylephrine. These results demonstrate that compounds 1, 2, 4 and 5 inhibit phenylephrine-induced vasoconstriction through endothelium-dependent production of EDRF/NO and/or through the reduction of the [Ca2+]i elevation induced by phenylephrine. On the other hand, the inhibitory mechanism of compound 3 on phenylephrine-induced vasoconstriction might involve the direct inhibition of smooth muscle functions through the reduction of [Ca2+]i elevation without affecting EDRF/NO production.
Phenylephrine
Cite
Citations (60)
During angiography contrast media (CM) induce changes in vessel tone. The pathophysiological reasons for this are poorly understood. In this short review the anatomical structures and physiological factors involved in vessel tone are described, and previous and recent findings in vitro and in vivo concerning the effect of CM on vessel tone are discussed.Although multifactorial, the main effect seems to result from a direct action of the CM on the vessel wall. For a particular CM formulation, the effect is due to a combination of its osmolality, molecular properties as well as electrolyte content. In vitro experiments performed in iso-osmolar solutions of pure CM suggest that CM interfere with the cellular mechanisms controlling intracellular calcium. When injected intravascularly, CM may cause either vasodilatation or vasoconstriction. Vasodilatation is the most frequent effect when a CM is injected into a vessel while vasoconstriction is relatively uncommon. Both vasodilatation and vasoconstriction can be caused by all types of CM.
Cite
Citations (13)
Arginine vasopressin (AVP) causes biphasic changes in vascular resistance in human forearms; vasoconstriction at lower doses and vasodilation at higher doses. Vasoconstriction is mediated by the V1 receptor. However, the mechanism of AVP-induced vasodilation is not known. We investigated whether AVP-induced vasodilation is mediated by nitric oxide (NO) in human forearms by examining the effects of L-arginine (a precursor of NO) and NG-monomethyl-L-arginine (L-NMMA, a blocker of NO synthase) on AVP-induced vasodilation. AVP was infused intraarterially at doses of 0.05, 0.1, 0.2, 0.5, and 1.0 ng/kg per min (n = 8). The lower doses of AVP (< or = 0.1 ng/kg per min) increased, whereas the higher doses of AVP (> or = 0.5 ng/kg per min) decreased forearm vascular resistance (FVR) (P < 0.01). Intraarterially infused L-arginine at 10 mg/min did not alter arterial pressure, baseline FVR, or heart rate. L-arginine did not alter the magnitude of AVP-induced vasoconstriction at the lower doses, but L-arginine augmented the magnitude of AVP-induced vasodilation at doses of 0.2 (P < 0.05), 0.5 (P < 0.01), and 1.0 (P < 0.05) ng/kg per min. In another group (n = 6), intraarterially infused L-NMMA (4 mumol/min for 5 min) increased baseline FVR without systemic effects, and inhibited acetylcholine-induced vasodilation (P < 0.01). L-NMMA at this dose inhibited AVP-induced vasodilation (P < 0.01) but did not affect vasoconstriction. L-arginine reversed the inhibitory effect of L-NMMA. Our results suggest that the vasodilatory effect of AVP may be mediated by NO in human forearms.
Omega-N-Methylarginine
Cite
Citations (74)
Prior work has documented the regulatory role of skeletal muscle feed arteries in rodent models, however it is unknown if human skeletal muscle feed arteries display such functionality. Feed arteries (888±188 μm ID) from 6 humans (53±3 yrs) were studied using pressure myography. Vessel function was assessed using potassium chloride (KCl), phenylephrine (PE), acetylcholine (ACh), and sodium nitroprusside (SNP) dose response curves (DRCs) to characterize non‐receptor and receptor‐mediated vasoconstriction as well as endothelium‐dependent and independent vasodilation, respectively. Vascular resistance was calculated using internal diameter changes due to pharmacological stimulation and Poiseuilles’ law (R= 8nL/πr 4 ). Vessel function protocols revealed robust vasoconstriction in response to PE and KCl (37 ± 6; 43 ± 19 % vasoconstriction, respectively), but also achieved significant vasodilation with ACh and SNP (97 ± 11; 117 ± 24 % vasodilation, respectively). Using the maximal PE and KCl‐induced vasoconstriction, vascular resistance was calculated to increase by 304 and 392%, respectively. These findings provide evidence that human skeletal muscle feed arteries are capable of generating significant changes in vascular resistance, and thus likely play a role in blood flow regulation. Support by NIH PO1 HL‐091830.
Electrical impedance myography
Phenylephrine
Sodium nitroprusside
Cite
Citations (0)
Acetylcholine (ACh) elicits vasodilation by releasing a number of endothelium-derived relaxing factors (EDRFs). We used the isolated perfused hydronephrotic rat kidney to examine the characteristics of ACh-induced vasodilation of renal afferent arterioles during different types of underlying vasoconstriction. Basal arteriolar tone was increased by either elevating perfusion pressure to 180 mm Hg (myogenic), administering 0.3 mumol/L norepinephrine (NE), or elevating medium potassium concentration to 30 mmol/L (KCl). ACh (10 mumol/L) completely reversed myogenic and NE-induced vasoconstriction and reversed KCl-induced vasoconstriction by 80 +/- 5%. However, whereas ACh produced a sustained vasodilation during KCl- and NE-induced vasoconstriction, only a transient reversal of myogenic vasoconstriction was observed, and myogenic tone recovered within 5 to 10 minutes. ACh-induced vasodilation of arterioles preconstricted with KCl was markedly inhibited by either indomethacin (100 mumol/L) or nitro-L-arginine ...
Myogenic contraction
Afferent arterioles
Cite
Citations (0)
HIF-1α plays an essential role in hemorrhagic shock-induced vasoconstriction. However, the underlying mechanisms remain poorly understood. Here, we studied both the role of HIF-1α in regulating vasodilatation, and the involvement of Cx40 in this process. We found that endothelium-dependent vasodilatation exhibited an overall decline after hemorrhagic shock: at the beginning of shock vasodilatation reactivity significantly decreased, followed by a slight increase from 0.5 h to 2 h after shock. After 2 h vasodilatation dropped again. Throughout this process, protein levels of HIF-1α gradually increased. In the late period of shock, vasodilatation reactivity was enhanced by oligomycin, an HIF-1α inhibitor, suggesting that HIF-1α may promote vasoconstriction. Moreover, in the late period of shock Cx40 levels gradually increased and exhibited a negative correlation with endothelium-dependent vasoconstriction reactivity. Furthermore, Cx40 AODN significantly improved vasoconstriction reactivity and could be regulated by either an HIF-1α inhibitor or an agonist. Together, these data suggest that HIF-1α may inhibit endothelium-dependent vasodilatation reactivity following hemorrhagic shock by up-regulating Cx40, especially in the late period of shock.
Hemorrhagic shock
Cite
Citations (7)
Astrocytes elicit bidirectional control of microvascular diameter in acutely isolated brain slices through vasoconstriction and vasodilation pathways that can be differentially recruited via the free Ca2+ concentration in endfeet and/or the metabolic status of the tissue. However, the Ca2+-level hypothesis has not been tested using direct manipulation. To overcome this, we used Ca2+-clamp whole-cell patching of peri-arteriole astrocytes to change astrocyte-free Ca2+ to different concentrations and examined the vascular response. We discovered that clamping Ca2+ at the approximate resting value (100 nM) had no impact on arteriole diameter in a pre-constricted arteriole. However, a moderate elevation to 250 nM elicited sustained vasodilation that was blocked by the COX-1 antagonist SC-560 (500 nM). The vasodilation to 250 nM Ca2+ was sensitive to the metabolic state, as it converted to vasoconstriction when oxygen tension was dramatically elevated. In normal oxygen, clamping astrocyte Ca2+ well above the resting level (750 nM) produced sustained vasoconstriction, which converted to vasodilation in the 20-HETE blocker HET0016 (1 μM). This response was fully blocked by the addition of SC-560 (500 nM), showing that 20-HETE-induced vasoconstriction dominated the dilatory action of COX-1. These data demonstrate that direct changes in astrocyte free Ca2+ can control multiple arteriole tone states through different mediators.
Arteriole
Cite
Citations (2)
Vasoactive
Hypoxia
Hypoxic pulmonary vasoconstriction
Cite
Citations (1)