logo
    Abstract 242: Mitophagy is Required for Mitochondrial Biogenesis and Myogenic Differentiation of Myoblasts
    0
    Citation
    0
    Reference
    10
    Related Paper
    Abstract:
    Myogenesis is a crucial process governing muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNML1/DRP1-mediated fragmentation and subsequent removal of mitochondria via p62/SQSTM-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α-mediated biogenesis. Mitochondrial fusion protein OPA1 is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that blocking autophagy with various inhibitors during differentiation results in a blockade in myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.
    Keywords:
    C2C12
    Paraquat (PQ) is one of the most frequently used pesticides in worldwide. In most countries, PQ is used without restrictions. To investigate the effect of PQ on myogenesis, cultures of C2C12, a useful model to study differentiation of myoblasts into myotubes, were exposed to various concentrations of PQ. Myotube formation did not occur in the presence of 50 µM PQ. Although cell death was not observed at this concentration, growth inhibition was evident in the growth medium. Production of myosin heavy chain, a myogenesis marker protein, decreased dose dependently with the concentration of PQ, which was added to the C2C12 cell culture during differentiation. Inhibition of myogenesis by PQ was not reversed by the addition of ascorbic acid. These results show that PQ is a strong inhibitor of muscle differentiation in vitro.
    C2C12
    Citations (2)
    Abstract The C2C12 cell line is frequently used as a model of skeletal muscle differentiation. In our serum‐free defined culture system, differentiation of C2C12 cells into myotubes required surface‐bound signals such as substrate‐adsorbed vitronectin or laminin. On the basis of this substrate requirement of myotube formation, we developed a photolithography‐based method to pattern C2C12 myotubes, where myotubes formed exclusively on vitronectin surface patterns. We have determined that the optimal line width to form single myotubes is approximately 30 μm. To illustrate a possible application of this method, we patterned myotubes on the top of commercial substrate‐embedded microelectrodes. In contrast to previous experiments where cell patterning was achieved by selective attachment of the cells to patterned surfaces in a medium that contained all of the factors necessary for differentiation, this study illustrates that surface patterning of a signaling molecule, which is essential for skeletal muscle differentiation in a defined system, can result in the formation of aligned myotubes on the patterns. This technique is being developed for applications in cell biology, tissue engineering, and robotics.
    C2C12
    Citations (67)
    This study aims at generating highly aligned functional myotubes using graphene as the underlying scaffold. Graphene not only supports the growth of C2C12 muscle cells but also enhances its differentiation and leads to spontaneous patterning of myotubes.
    C2C12
    Citations (48)
    We have demonstrated that prions accumulate to high levels in non-proliferative C2C12 myotubes. C2C12 cells replicate as myoblasts but can be differentiated into myotubes. Earlier studies indicated that C2C12 myoblasts are not competent for prion replication. (1) We confirmed that observation and demonstrated, for the first time, that while replicative myoblasts do not accumulate PrP(Sc), differentiated post-mitotic myotube cultures replicate prions robustly. Here we extend our observations and describe the implication and utility of this system for replicating prions.
    Replication
    Citations (6)
    일반적으로 노화, 영양부족 및 다양한 만성질환에 의하여 유발되는 근위축은 근육 단백질 합성 억제 및 분해증가를 통하여 근섬유 및 근육의 밀도를 감소시키는 것으로 알려져 있다. 본 연구에서는 근위축과 관련된 in vitro 실험을 위한 C2C12 근아세포에서 근관세포로의 분화과정을 확립하고, 분화가 유발된 C2C12 근관세...
    C2C12
    Abstract The muscle specific miRNA, miR-206, is important for the process of myogenesis; however, studying the function of miR-206 in muscle development and differentiation still proves challenging because the complement of mRNA targets it regulates remains undefined. In addition, miR-206 shares close sequence similarity to miR-1, another muscle specific miRNA, making it hard to study the impact of miR-206 alone in cell culture models. Here we used CRISPR/Cas9 technology to knockout miR-206 in C2C12 muscle cells. We show that knocking out miR-206 significantly impairs and delays differentiation and myotube formation, revealing that miR-206 alone is important for myogenesis. In addition, we use an experimental affinity purification technique to identify new mRNA targets of miR-206 in C2C12 cells. We identified over one hundred mRNAs as putative miR-206 targets. Functional experiments on six putative targets indicate that Adam19, Bgn, Cbx5, Smarce1, and Spg20 are direct miR-206 targets in C2C12 cells. Our data show a unique and important role for miR-206 in myogenesis.
    C2C12
    Knockout mouse
    Citations (0)