Comparative transcriptome analysis of flower heterosis in two soybean F1 hybrids by RNA-seq
Chunbao ZhangChunjing LinFuyou FuXiaofang ZhongBao PengHao YanJingyong ZhangWeilong ZhangPengnian WangXiaoyang DingWei ZhangLimei Zhao
33
Citation
52
Reference
10
Related Paper
Citation Trend
Abstract:
Heterosis has been widely exploited as an approach to enhance crop traits during breeding. However, its underlying molecular genetic mechanisms remain unclear. Recent advances in RNA sequencing technology (RNA-seq) have provided an opportunity to conduct transcriptome profiling for heterosis studies. We used RNA-seq to analyze the flower transcriptomes of two F1 hybrid soybeans (HYBSOY-1 and HYBSOY-5) and their parents. More than 385 million high-quality reads were generated and aligned against the soybean reference genome. A total of 681 and 899 genes were identified as being differentially expressed between HYBSOY-1 and HYBSOY-5 and their parents, respectively. These differentially expressed genes (DEGs) were categorized into four major expression categories with 12 expression patterns. Furthermore, gene ontology (GO) term analysis showed that the DEGs were enriched in the categories metabolic process and catalytic activity, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found that metabolic pathway and biosynthesis of secondary metabolites were enriched in the two F1 hybrids. Comparing the DEGs of the two F1 hybrids by GO term and KEGG pathway analyses identified 26 common DEGs that showed transgressive up-regulation, and which could be considered potential candidate genes for heterosis in soybean F1 hybrids. This identification of an extensive transcriptome dataset gives a comprehensive overview of the flower transcriptomes in two F1 hybrids, and provides useful information for soybean hybrid breeding. These findings lay the foundation for future studies on molecular mechanisms underlying soybean heterosis.Keywords:
KEGG
RNA-Seq
Candidate gene
In order to understand the gene information, function, haloduric pathway (glycerolipid metabolism) and related key genes for Dunaliella viridis, we used Illumina HiSeqTM 2000 high-throughput sequencing technology to sequence its transcriptome. Trinity soft was used to assemble the data to form transcripts. Based on the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG ) databases, we carried out functional annotation and classification, pathway annotation, and the opening reading fragment (ORF) sequence prediction of transcripts. The key genes in the glycerolipid metabolism were analyzed. The results suggested that 81,593 transcripts were found, and 77,117 ORF sequences were predicted, accounting for 94.50% of all transcripts. COG classification results showed that 16,569 transcripts were assigned to 24 categories. GO classification annotated 76,436 transcripts. The number of transcripts for biologcial processes was 30,678, accounting for 40.14% of all transcripts. KEGG pathway analysis showed that 26,428 transcripts were annotated to 317 pathways, and 131 pathways were related to metabolism, accounting for 41.32% of all annotated pathways. Only one transcript was annotated as coding the key enzyme dihydroxyacetone kinase involved in the glycerolipid pathway. This enzyme could be related to glycerol biosynthesis under salt stress. This study further improved the gene information and laid the foundation of metabolic pathway research for Dunaliella viridis.
KEGG
Metabolic pathway
Cite
Citations (4)
RNA-Seq is a technology to sequence transcriptomes using next-generation sequencing technologies. It has been widely used for analyses such as gene expression profiling and identification of differentially expressed genes (DEG). This chapter focuses on the design of RNA-Seq experiments and on the bioinformatics issues related to the assembly of RNA-Seq short reads into reference transcriptomes. It presents procedures and command lines for both de novo assembly approaches and reference-sequence-guided assembly approaches. In spite of the rapid progress in genome sequencing with aquaculture species, the reference genome sequences or reference transcriptomes are not yet available formost aquaculture species. If a reference genome sequence is available, reference-guided assembly methods can be used. In contrast, de novo RNA-Seq assembly methods must be used in the absence of a reference genome sequence. TopHat-Cufflinks is the most popular reference-guided assembly method, while Trinity is the most popular de novo assembly method.
Sequence assembly
RNA-Seq
Cite
Citations (0)
Abstract Background RNA sequencing (RNA-seq) analyses can benefit from performing a genome-guided and de novo assembly, in particular for species where the reference genome or the annotation is incomplete. However, tools for integrating an assembled transcriptome with reference annotation are lacking. Findings Necklace is a software pipeline that runs genome-guided and de novo assembly and combines the resulting transcriptomes with reference genome annotations. Necklace constructs a compact but comprehensive superTranscriptome out of the assembled and reference data. Reads are subsequently aligned and counted in preparation for differential expression testing. Conclusions Necklace allows a comprehensive transcriptome to be built from a combination of assembled and annotated transcripts, which results in a more comprehensive transcriptome for the majority of organisms. In addition RNA-seq data are mapped back to this newly created superTranscript reference to enable differential expression testing with standard methods.
RNA-Seq
Sequence assembly
Gene Annotation
Necklace
Cite
Citations (15)
Background The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes. Principal Findings De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr) protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go) categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose. Conclusion This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with other avian species as useful tools to understand the goose immune system.
KEGG
Sequence assembly
Cite
Citations (19)
Transcriptome assays are increasingly being performed by high-throughput RNA sequencing (RNA-seq). For organisms whose genomes have not been sequenced and annotated, transcriptomes must be assembled de novo from the RNA-seq data. Here, we present novel algorithms, specific to bacterial gene structures and transcriptomes, for analysis of bacterial RNA-seq data and de novo transcriptome assembly. The algorithms are implemented in an open source software system called Rockhopper 2. We find that Rockhopper 2 outperforms other de novo transcriptome assemblers and offers accurate and efficient analysis of bacterial RNA-seq data. Rockhopper 2 is available at http://cs.wellesley.edu/~btjaden/Rockhopper .
RNA-Seq
Sequence assembly
Cite
Citations (1,641)
KEGG
UniGene
Litopenaeus
RNA-Seq
Candidate gene
Sequence assembly
UniProt
Cite
Citations (82)
Capra hircus is an important economic livestock animal, and therefore, it is necessary to discover transcriptome information about their reproductive performance. In this study, we performed de novo transcriptome sequencing to produce the first transcriptome dataset for the goat ovary using high-throughput sequencing technologies. The result will contribute to research on goat reproductive performance.RNA-seq analysis generated more than 38.8 million clean paired end (PE) reads, which were assembled into 80,069 unigenes (mean size = 619 bp). Based on sequence similarity searches, 64,824 (60.6%) genes were identified, among which 29,444 and 11,271 unigenes were assigned to Gene Ontology (GO) categories and Clusters of Orthologous Groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) showed that 27,766 (63.4%) unigenes were mapped to 258 KEGG pathways. Furthermore, we investigated the transcriptome differences of goat ovaries at two different ages using a tag-based digital gene expression system. We obtained a sequencing depth of over 5.6 million and 5.8 million tags for the two ages and identified a large number of genes associated with reproductive hormones, ovulatory cycle and follicle. Moreover, many antisense transcripts and novel transcripts were found; clusters with similar differential expression patterns, enriched GO terms and metabolic pathways were revealed for the first time with regard to the differentially expressed genes.The transcriptome provides invaluable new data for a functional genomic resource and future biological research in Capra hircus, and it is essential for the in-depth study of candidate genes in breeding programs.
Capra hircus
Cite
Citations (28)
Abstract The genes associated with fruiting body formation of Sparasis latifolia are valuable for improving mushroom breeding. To investigate this process, 4.8 × 10 8 RNA-Seq reads were acquired from three stages: hyphal knot (SM), primordium (SP), and primordium differentiation (SPD). The de novo assembly generated a total of 48,549 unigenes, of which 71.53% (34,728) unigenes could be annotated by at least one of the KEGG (Kyoto Encyclopedia of Genes and Genomes), GO (Gene Ontology), and KOG (Eukaryotic Orthologous Group) databases. KEGG and KOG analyses respectively mapped 32,765 unigenes to 202 pathways and 19,408 unigenes to 25 categories. KEGG pathway enrichment analysis of DEGs (differentially expressed genes) indicated primordium initiation was significantly related to 66 pathways, such as “Ribosome”, “metabolism of xenobiotics by cytochrome P450”, and “glutathione metabolism” (among others). The MAPK and mTOR signal transduction pathways underwent significant adjustments during the SM to SP transition. Further, our research revealed the PI3K-Akt signaling pathway related to cell proliferation could play crucial functions during the development of SP and SPD. These findings provide crucial candidate genes and pathways related to primordium differentiation and development in S. latifolia , and advances our knowledge about mushroom morphogenesis.
KEGG
Primordium
Metabolic pathway
Cite
Citations (3)
KEGG
Sequence assembly
Illumina dye sequencing
Cite
Citations (16)
Abstract Panax quinquefolius L. has been considered as an important traditional Chinese medicine with a history of more than 300 years in China. Ginsenoside is the main bioactive component. Our research group has found that the accumulation of ginsenoside could be affected by arbuscular mycorrhizal fungi (AMF). However the underlying mechanism how AMF affected the biosynthesis of ginsenoside in P. quinquefolius is still unclear. In this study, the RNA-seq analysis was used to evaluate the effects of AMF ( Rhizophagus intraradices , R. intraradices ) on the expression of ginsenoside synthesis related genes in P. quinquefolius root. The results indicated that a symbiotic relationship between R. intraradices and P. quinquefolius was established. RNA-seq achieved approximately 48.62 G reads of all samples. Assembly of all the reads involved in all samples produced 63420 transcripts and 24137 unigenes. Differential expression analysis was performed between the control and AMF group. A total of 111 differentially expressed genes (DEGs) in response to AMF vs control were identified, 78 and 33 transcripts were upregulated and downregulated, respectively. Based on the functional analysis, Gene ontology (GO) analysis revealed that most DEGs were related to stress responses and cellular metabolic processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified transduction, plant hormone signal transduction and terpenoids and polyketides biosynthesis pathways. Furthermore, the expression of glycolysis-related genes and ginsenoside synthesis related genes was largely induced by AMF. In conclusion, our results comprehensively elucidated the molecular mechanism how AMF affected the biosynthesis of ginsenoside in P.quinquefolius by transcriptome profiling.
KEGG
RNA-Seq
Cite
Citations (0)