logo
    Abstract:
    H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the 'Eastern' G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages.Emerging Microbes & Infections (2017) 6, e11; doi:10.1038/emi.2016.139; published online 22 March 2017
    Keywords:
    Avidity
    Previous studies demonstrated that individuals with subtype D HIV infection who had been infected for 2 or more years were frequently misclassified as assay positive using cross-sectional incidence assays. Samples from 510 subjects (212 subtype A, 298 subtype D) who were infected for 2.2 to 14.5 years (median 5.4 years) and were not virally suppressed were tested using an LAg-Avidity enzyme immunoassay (LAg-Avidity EIA), Bio-Rad Avidity assay, and BED capture enzyme immunoassay (BED-CEIA). The performance of these three assays was evaluated using various assay cutoff values [LAg-Avidity EIA: <1.0 OD-n and <2.0 OD-n; Bio-Rad Avidity assay: <40% avidity index (AI) and <80% AI; BED-CEIA: <0.8 OD-n]. The mean LAg-Avidity EIA result was higher for subtype A than D (4.54±0.95 vs. 3.86±1.26, p<0.001); the mean Bio-Rad Avidity assay result was higher for subtype A than D (88.9%±12.5% vs. 75.1±30.5, p<0.001); and the mean BED-CEIA result was similar for the two subtypes (2.2±1.2 OD-n for subtype A, 2.2±1.3 OD-n for subtype D, p<0.9). The frequency of misclassification was higher for individuals with subtype D infection compared to those with subtype A infection, using either the LAg-Avidity EIA with a cutoff of <2.0 OD-n or the Bio-Rad Avidity assay with cutoffs of <40% or <80% AI. No subtype-specific differences in assay performance were observed using the BED-CEIA. Sex and age were not significantly associated with misclassification by any assay. The LAg-Avidity EIA with a cutoff <1.0 OD-n had the lowest frequency of misclassification in this Ugandan population.
    Avidity
    Citations (36)
    Abstract Antibodies are secreted proteins that are crucial to recognition of pathogens by the immune system and are also efficient pharmaceuticals. The affinity and specificity of target recognition can increase remarkably through avidity effects, when the antibody can bind a multivalent antigen through more than one epitope simultaneously. A key goal of antibody engineering is thus to optimize avidity, but little is known about the nanoscale spatial dependence of avidity in antibodies. Here, we develop a set of anti-parallel coiled-coils spanning from 8-21 nm and validate their structure using biophysical techniques. We use the coiled-coils to control the spacing between two epitopes, and measure how antigen spacing affects the stability of the bivalent antibody:antigen complex. We find a maximal avidity enhancement at a spacing of 14 nm, but only see a ∼2-fold variation of avidity in the range from 8-21 nm. In contrast to recent studies, we find the avidity to be relatively insensitive to epitope spacing near the avidity maximum as long as it is within the spatial tolerance of the antibody. The coiled-coil systems developed here may prove a useful protein nanocaliper for profiling the spatial tolerance and avidity profile of bispecific antibodies.
    Avidity
    Citations (0)
    Viral receptor plays a significant role in the interaction between virus and its cellular receptors.It is one of the crucial factors of viral infection.The host specificity and tissue tropism can be determined by the viral receptor.Both of the traditional methods and molecular biological techniques can be used in the studies of the viral receptor.Instead of live cells,the excised and purified cell membranes have been applied to the study of viral receptors.Due to the in-depth study of viral receptors,some studies discovered that several receptor blocking inhibitors could inhibit the binding of virus to target cells,such as plant lections and soluble heparin.Therefore,some new idea and means could do contribute to the prevention and control of viral disease.
    Tissue tropism
    Viral infection
    Cell surface receptor
    Citations (0)
    A virus initiates infection by attaching to its specific receptor on the surface of a susceptible host cell. This prepares the way for the virus to enter the cell. Consequently, the expression of the receptor on specific cells and tissues of the host is a major determinant of the route of entry of the virus into the host and of the patterns of virus spread and pathogenesis in the host. This review emphasizes the virus-receptor interactions of human immunodeficiency virus, the rhinoviruses, the herpesviruses, and the coronaviruses. These interactions are often found to be complex and dynamic, involving multiple sites or factors on both the virus and the host cell. Also, the receptor may play an important role in virus entry per se in addition to its role in virus binding. In the cases of human immunodeficiency virus and the rhinoviruses, ingenious approaches to therapeutic strategies based on inhibiting virus attachment and entry are under development and in clinical trials.
    Pathogenesis
    Antibody-dependent enhancement
    Viral Pathogenesis
    Citations (67)
    Background Accurate and reliable laboratory methods are needed for estimation of HIV-1 incidence to identify the high-risk populations and target and monitor prevention efforts. We previously described a single-well limiting-antigen avidity enzyme immunoassay (LAg-Avidity EIA) to detect recent HIV-1 infection. Methods We describe here further optimization and characterization of LAg-Avidity EIA, comparing it to the BED assay and a two-well avidity-index (AI) EIA. Specimen sets included longitudinal sera (n = 393), collected from 89 seroconverting individuals from 4 cohorts representing 4 HIV-1 subtypes, and sera from AIDS patients (n = 488) with or without TB co-infections from 3 different cohorts. Ninety seven HIV-1 positive specimens were purchased commercially. The BED assay, LAg-Avidity EIA, AI-EIA and HIV serology were performed, as needed. Results Monitoring quality control specimens indicated high reproducibility of the LAg-Avidity EIA with coefficient of variation of <10% in the dynamic range. The LAg-Avidity EIA has an overall mean duration of recency (ω) of 141 days (95% CI 119–160) at normalized optical density (ODn) cutoff of 1.0, with similar ω in different HIV-1 subtypes and populations (132 to 143 days). Antibody avidity kinetics were similar among individuals and subtypes by both the LAg-Avidity EIA and AI-EIA compared to the HIV-IgG levels measured by the BED assay. The false recent rate among individuals with AIDS was 0.2% with the LAg-Avidity EIA, compared to 2.9% with the BED assay. Western blot profiles of specimens with increasing avidity confirm accurate detection of recent HIV-1 infections. Conclusions These data demonstrate that the LAg-Avidity EIA is a promising assay with consistent ω in different populations and subtypes. The assay should be very useful for 1) estimating HIV-1 incidence in cross-sectional specimens as part of HIV surveillance, 2) identifying risk factors for recent infections, 3) measuring impact of prevention programs, and 4) studying avidity maturation during vaccine trials.
    Avidity
    Citations (206)
    Abstract Background Low initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers dropping to undetectable levels within months after infection have raised concerns about long-term immunity. Both the antibody levels and the avidity of the antibody–antigen interaction should be examined to understand the quality of the antibody response. Methods A testing-on-a-probe “plus” panel (TOP-Plus) was developed to include a newly developed avidity assay built into the previously described SARS-CoV-2 TOP assays that measured total antibody (TAb), surrogate neutralizing antibody (SNAb), IgM, and IgG on a versatile biosensor platform. TAb and SNAb levels were compared with avidity in previously infected individuals at 1.3 and 6.2 months after infection in paired samples from 80 patients with coronavirus disease 2019 (COVID-19). Sera from individuals vaccinated for SARS-CoV-2 were also evaluated for antibody avidity. Results The newly designed avidity assay in this TOP panel correlated well with a reference Bio-Layer Interferometry avidity assay (r = 0.88). The imprecision of the TOP avidity assay was &lt;10%. Although TAb and neutralization activity (by SNAb) decreased between 1.3 and 6.2 months after infection, the antibody avidity increased significantly (P &lt; 0.0001). Antibody avidity in 10 SARS-CoV-2 vaccinated individuals (median: 28 days after vaccination) was comparable to the measured antibody avidity in infected individuals (median: 26 days after infection). Conclusions This highly precise and versatile TOP-Plus panel with the ability to measure SARS-CoV-2 TAb, SNAb, IgG, and IgM antibody levels and avidity of individual sera on one sensor can become a valuable asset in monitoring not only patients infected with SARS-CoV-2 but also the status of individuals’ COVID-19 vaccination response.
    2019-20 coronavirus outbreak
    Citations (16)
    Abstract Antibodies are secreted proteins that are crucial to recognition of pathogens by the immune system and are also efficient pharmaceuticals. The affinity and specificity of target recognition can increase remarkably through avidity effects, when the antibody can bind a multivalent antigen through more than one epitope simultaneously. A key goal of antibody engineering is thus to optimize avidity, but little is known about the nanoscale spatial dependence of avidity in antibodies. Here, we develop a set of anti-parallel coiled-coils spanning from 7 to 20 nm and validate their structure using biophysical techniques. We use the coiled-coils to control the spacing between two epitopes, and measure how antigen spacing affects the stability of the bivalent antibody:antigen complex. We find a maximal avidity enhancement at a spacing of 13 nm. In contrast to recent studies, we find the avidity to be relatively insensitive to epitope spacing near the avidity maximum as long as it is within the spatial tolerance of the antibody. We thus only see a ~ twofold variation of avidity in the range from 7 to 20 nm. The coiled-coil systems developed here may prove a useful protein nanocaliper for profiling the spatial tolerance and avidity profile of bispecific antibodies.
    Avidity
    Citations (17)