logo
    <p>The anelastic attenuation of rocks strongly depends on the contained fluid physical state and saturation. Furthermore, it is more sensitive than elastic parameters to changes in the physical state of materials. In a geologically complex  volcanic context, where fluids play a very important role, anelastic imaging of the subsoil is therefore a very powerful tool for a better understanding of its dynamics.</p><p>In this study we present a robust workflow aimed at retrieve accurate 1-D and 3-D anelastic models from the processing of active seismic data, in terms of lateral and depth variations of P-wave quality factors Q<sub>P</sub>. This methodology has been applied to data collected during a high resolution active seismic experiment in a very small-scale volcanic volume, the Solfatara crater, within Campi Flegri caldera, Southern Italy. The presented methodology is developed in three distinct steps: 1) the active seismic data have been properly processed and analyzed for measuring the t* attenuation parameter for all possible source-receivers couples. First, the source contribution has been removed by cross-correlating the recorded signal with the sweep function of the Vibroseis, which was the adopted active seismic source. Then, the spectral decay method has been applied in order to compute the t* values. 2) A reference 1-D attenuation model has been retrieved by means of a grid search procedure aiming at finding the 1-D Qp structure that minimizes the residual between the average observed t* and the theoretical t* distributions. The obtained starting reference model allowed to build a preliminary map of t* residuals through which the retrieved t* dataset has been validated. 3) The 15,296 t* measurements have been inverted by means of a linearized, perturbative approach, in a 160 x 160 x 45 m<sup>3 </sup>tomographic grid.</p><p>The retrieved 3-D attenuation model describes the first 30 m depths of Solfatara volcano as composed of very high attenuating materials, with Qp values ranging between 5 and 40. The very low Qp values, correlated with low Vp values retrieved by a previous tomographic work carried out in the area, indicate the low consolidation degree of very superficial volcanic materials of Solfatara volcano. Finally, in the NE part of the crater, lower attenuating bodies have been imaged: it is a further hint for characterizing this area of the volcano as the shallow release of the CO<sub>2 </sub>plume through the main fumaroles of the crater.</p>
    Caldera
    Receiver function
    Fumarole
    SUMMARY We present 2-D attenuation images of the Mt Etna volcanic region on the basis of separation of intrinsic and scattering effects. The analysis presented here exploits a large active seismic database that fully covers the area under study. We observe that scattering effects dominate over intrinsic attenuation, suggesting that the region is very heterogeneous. Comparison with analyses conducted at other volcanoes reveals that the Mt Etna region is characterized by high intrinsic attenuation, resulting from the presence of large volcanoclastic deposits at shallow depth. The 2-D distributions of intrinsic and scattering anomalies show the presence of regions characterized by high and low attenuation effects, corresponding to several tectonic and volcanic features. In particular, we identify a high attenuation region in the SW sector of the Mt Etna volcanic complex, which is correlated with high seismicity rates and volcanism. This work supports the hypothesis of a link between the dynamics of the SW flank and the recharge of the volcano in the last decades, occurring under the summit crater and, secondarily, the upper South rift zone.
    Rift zone
    Citations (11)