Predicting stable phase monolayer Mo2C (MXene), a superconductor with chemically-tunable critical temperature
98
Citation
40
Reference
10
Related Paper
Citation Trend
Abstract:
Two-dimensional molybdenum carbide (Mo2C) MXene is predicted to be a superconductor with the critical temperature tunable by surface termination.Keywords:
MXenes
MXenes, a kind of two-dimensional material of early transition metal carbides and carbonitrides, have emerged as a unique class of layered-structured metallic materials with attractive features, as good conductivity comparable to metals, enhanced ionic conductivity, hydrophilic property derived from their hydroxyl or oxygen-terminated surfaces, and mechanical flexibility. With tunable etching methods, the morphology of MXenes can be effectively controlled to form nanoparticles, single layer, or multi-layer nanosheets, which exhibit large specific surface areas and is favorable for enhancing the sensing performance of MXenes based sensors. Moreover, MXenes are available to form composites with other materials facilely. With structure design, MXenes or its composite show enhanced mechanical flexibility and stretchability, which enabled its wide application in the fields of wearable sensors, energy storage, and electromagnetic shielding. In this review, recent progress in MXenes is summarized, focusing on its application in wearable sensors including pressure/strain sensing, biochemical sensing, temperature, and gas sensing. Furthermore, the main challenges and future research are also discussed.
MXenes
Cite
Citations (182)
In the past few years, a special exfoliation method has been successfully used to strip a new family of two-dimensional transition metal carbides, nitrides, and carbonitrides from the layered MAX phase, called MXenes. These materials have the formula Mn + 1Xn, where M is a transition metal, X is C or N, and n = 1, 2, or 3. MXene is usually covered with functional groups, and thus, the formula Mn + lXnTx is also used, where T represents various functional groups. The as-synthesised MXenes are electronically conducting in addition to being hydrophilic, which is an interesting combination for a ‘conductive clay’. MXenes have already shown promising applications in various fields, such as energy storage, catalysis, and electromagnetic shielding. This chapter introduces the latest research developments related to the synthesis, structure, performance, and application of MXenes. The future vision for MXenes is also forecast.
MXenes
MAX phases
Exfoliation joint
Cite
Citations (0)
MXenes are two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides typically synthesized from layered MAX-phase precursors. With over 50 experimentally reported MXenes and a near-infinite number of possible chemistries, MXenes make up the fastest-growing family of 2D materials. They offer a wide range of properties, which can be altered by their chemistry (M, X) and the number of metal layers in the structure, ranging from two in M2XTx to five in M5X4Tx. Only one M5X4 MXene, Mo4VC4, has been reported. Herein, we report the synthesis and characterization of two M5AX4 mixed transition metal MAX phases, Ti2.5Ta2.5AlC4 and Ti2.675Nb2.325AlC4, and their successful topochemical transformation into Ti2.5Ta2.5C4Tx and Ti2.675Nb2.325C4Tx MXenes. The resulting MXenes were delaminated into single-layer flakes, analyzed structurally, and characterized for their thermal and optical properties. This establishes a family of M5AX4 MAX phases and their corresponding MXenes. These materials were experimentally produced based on guidance from theoretical predictions, leading to more exciting applications for MXenes.
MXenes
MAX phases
Characterization
Cite
Citations (54)
MXenes
MAX phases
Cite
Citations (150)
MXenes
MAX phases
Cite
Citations (47)
MXenes
Cite
Citations (209)
Double-transition-metal MXenes (D-MXenes) have been widely pursued in the advancement of the renewable energy storage technology in recent years. In this work, the hydrogen evolution reaction (HER) catalytic mechanism of several oxygen-terminated D-MXenes with the chemical formula of M′2M″C2O2 (M′ = Mo, Cr; M″ = Ti, V, Nb, Ta) is theoretically studied. For comparison, the corresponding monometallic MXenes (M-MXenes, M′3C2O2) are fairly compared by means of the density functional theory calculations. Based on our theoretical results, the HER performance of M-MXenes can be improved by constructing a "sandwich-like" ordered D-MXene configuration. Moreover, the HER performance of Mo-based D-MXenes (Mo2M″C2O2) is superior to that of Cr-based D-MXenes (Cr2M″C2O2), which highlights that the HER activity of Mo2VC2O2 and Mo2NbC2O2 is better than that of Pt(111). This work not only unravels the HER mechanism of D-MXenes (M′2M″C2O2) but also paves the way in designing emergent MXene-based HER electrocatalysts with high efficiency.
MXenes
Cite
Citations (22)
MXenes for Sensors Matheus Costa Cichero, João Henrique Zimnoch Dos Santos MXenes are two-dimension materials based on transition metal carbides, nitrides or carbonitrides, which were first obtained from their precursor 3D bulk layered materials Ti3AlC2 MAX phase in 2011, resulting in Ti3C2. MXenes possess the metallic conductivity and hydrophilicity through the hydroxyl and oxygen surface […]
MXenes
MAX phases
Cite
Citations (1)
The properties of MXenes, a new group of quasi-two-dimensional d-metal carbide or nitride nanomaterials derived by chemical exfoliation from the MAX phases, can be very sensitive to the presence of surface functional groups. Herein, the MXenes Ti2C and Ti3C2 functionalized by methoxy groups are considered by means of the density functional theory tight-binding method. Their structural, electronic properties, and relative stability are discussed in comparison with related and experimentally fabricated hydroxy derivatives of MXenes.
MXenes
Exfoliation joint
MAX phases
Nanomaterials
Titanium carbide
Cite
Citations (0)
Two-dimensional metal carbides and nitrides–MXenes─represent a group of materials which have attained growing attention over the last decade due to their chemical versatility, making them highly promising in areas such as energy storage, superconductivity, and heterogenous catalysis. Surface terminations are a natural consequence of the MXene synthesis, conventionally consisting of O, OH, and F. However, recent studies have extended the chemical domain of the surface terminations to other elements, and they should be considered as an additional parameter governing the MXene properties. There is a shortfall in the understanding of how various chemical species could act as terminations on different MXenes. In particular, there is limited comprehension in which chemical environments different terminations are stable. Here, we present an extensive theoretical study of the surface terminations of MXenes in different atmospheres by considering in total six experimentally achieved MXenes (Ti2C, Nb2C, V2C, Mo2C, Ti3C2, and Nb4C3) and twelve surface terminations (O, OH, N, NH, NH2, S, SH, H, F, Cl, Br, and I). We consider fully terminated (single termination) MXenes and also the impact of substituting individual terminations. Our study provides insights into what terminations are stable on which MXenes in different chemical environments, with predictions of how to obtain single-termination MXenes and which MXenes are resilient under ambient conditions. In addition, we propose synthesis protocols of MXenes which have not yet been realized in experiments. It is anticipated that alongside the development of new synthesis routes, our study will provide design rules for how to tailor the surface terminations of MXenes.
MXenes
MAX phases
Cite
Citations (91)