logo
    The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system
    72
    Citation
    83
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The carbon storage regulator protein CsrA regulates cellular processes post-transcriptionally by binding to target-RNAs altering translation efficiency and/or their stability. Here we identified and analyzed the direct targets of CsrA in the human pathogen Legionella pneumophila. Genome wide transcriptome, proteome and RNA co-immunoprecipitation followed by deep sequencing of a wild type and a csrA mutant strain identified 479 RNAs with potential CsrA interaction sites located in the untranslated and/or coding regions of mRNAs or of known non-coding sRNAs. Further analyses revealed that CsrA exhibits a dual regulatory role in virulence as it affects the expression of the regulators FleQ, LqsR, LetE and RpoS but it also directly regulates the timely expression of over 40 Dot/Icm substrates. CsrA controls its own expression and the stringent response through a regulatory feedback loop as evidenced by its binding to RelA-mRNA and links it to quorum sensing and motility. CsrA is a central player in the carbon, amino acid, fatty acid metabolism and energy transfer and directly affects the biosynthesis of cofactors, vitamins and secondary metabolites. We describe the first L. pneumophila riboswitch, a thiamine pyrophosphate riboswitch whose regulatory impact is fine-tuned by CsrA, and identified a unique regulatory mode of CsrA, the active stabilization of RNA anti-terminator conformations inside a coding sequence preventing Rho-dependent termination of the gap operon through transcriptional polarity effects. This allows L. pneumophila to regulate the pentose phosphate pathway and the glycolysis combined or individually although they share genes in a single operon. Thus the L. pneumophila genome has evolved to acclimate at least five different modes of regulation by CsrA giving it a truly unique position in its life cycle.
    Keywords:
    rpoS
    Stringent response
    Riboswitch
    Terminator (solar)
    Response regulator
    ppGpp is an intracellular sensor that, in response to different types of stress, coordinates the rearrangement of the gene expression pattern of bacteria to promote adaptation and survival to new environmental conditions. First described to modulate metabolic adaptive responses, ppGpp modulates the expression of genes belonging to very diverse functional categories. In Escherichia coli, ppGpp regulates the expression of cellular factors that are important during urinary tract infections. Here, we characterize the role of this alarmone in the regulation of the hlyCABDII operon of the UPEC isolate J96, encoding the toxin α-hemolysin that induces cytotoxicity during infection of bladder epithelial cells. ppGpp is required for the expression of the α-hemolysin encoded in hlyCABDII by stimulating its transcriptional expression. Prototrophy suppressor mutations in a ppGpp-deficient strain restore the α-hemolysin expression from this operon to wild-type levels, confirming the requirement of ppGpp for its expression. ppGpp stimulates hlyCABDII expression independently of RpoS, RfaH, Zur, and H-NS. The expression of hlyCABDII is promoted at 37 °C and at low osmolarity. ppGpp is required for the thermoregulation but not for the osmoregulation of the hlyCABDII operon. Studies in both commensal and UPEC isolates demonstrate that no UPEC specific factor is strictly required for the ppGpp-mediated regulation described. Our data further support the role of ppGpp participating in the coordinated regulation of the expression of bacterial factors required during infection.
    rpoS
    Stringent response
    Hemolysin
    Citations (3)
    ABSTRACT The RpoS sigma factor (also called σ S or σ 38 ) is known to regulate at least 50 genes in response to environmental sources of stress or during entry into stationary phase. Regulation of RpoS abundance and activity is complex, with many factors participating at multiple levels. One factor is the nutritional stress signal ppGpp. The absence of ppGpp blocks or delays the induction of rpoS during entry into stationary phase. Artificially inducing ppGpp, without starvation, is known to induce rpoS during the log phase 25- to 50-fold. Induction of ppGpp is found to have only minor effects on rpoS transcript abundance or on RpoS protein stability; instead, the efficiency of rpoS mRNA translation is increased by ppGpp as judged by both RpoS pulse-labeling and promoter-independent effects on lacZ fusions. DksA is found to affect RpoS abundance in a manner related to ppGpp. Deleting dksA blocks rpoS induction by ppGpp. Overproduction of DksA induces rpoS but not ppGpp. Deleting dks A neither alters regulation of ppGpp in response to amino acid starvation nor nullifies the inhibitory effects of ppGpp on stable RNA synthesis. Although this suggests that dksA is epistatic to ppGpp, inducing ppGpp does not induce DksA. A dksA deletion does display a subset of the same multiple-amino-acid requirements found for ppGpp 0 mutants, but overproducing DksA does not satisfy ppGpp 0 requirements. Sequenced spontaneous extragenic suppressors of dksA polyauxotrophy are frequently the same T563P rpoB allele that suppresses a ppGpp 0 phenotype. We propose that DksA functions downstream of ppGpp but indirectly regulates rpoS induction.
    rpoS
    Stringent response
    Sigma factor
    Overproduction
    In Escherichia coli, the sigma factor, RpoS, is a central regulator in stationary-phase cells. We have identified a gene, sprE (stationary-phase regulator), as essential for the negative regulation of rpoS expression. SprE negatively regulates the rpoS gene product at the level of protein stability, perhaps in response to nutrient availability. The ability of SprE to destabilize RpoS is dependent on the ClpX/ClpP protease. Based on homology, SprE is a member of the response regulator family of proteins. SprE is the first response regulator identified that is implicated in the control of protein stability. Moreover, SprE is the first reported protein that appears to regulate rpoS in response to a specific environmental parameter.
    rpoS
    Response regulator
    Sigma factor
    Citations (245)
    ABSTRACT Synthesis of the OmpF porin of Escherichia coli is regulated in response to environmental and growth phase signals. In order to identify constituents of the various regulatory pathways involved in modulating ompF transcriptional expression, transposon insertion mutagenesis was performed and mutations that increased ompF′-lacZ activity were identified as previously described. Mutations mapping to a previously identified gene of unknown function, lrhA , were obtained. We found that LrhA, a LysR homolog, functions as a regulatory component in the RpoS-dependent growth phase repression of ompF . In addition to altered growth phase regulation of ompF , these lrhA mutants have pleiotropic stationary-phase defects as a result of decreased RpoS levels. We provide evidence that LrhA promotes degradation of RpoS by functioning within a genetic pathway that includes the response regulator SprE and the ClpXP protease. LrhA functions upstream of the other components in the pathway and appears to modulate the activity of SprE.
    rpoS
    Response regulator
    Transposon mutagenesis
    Strains of Escherichia coli which lack detectable guanosine 3',5'-bispyrophosphate (ppGpp) display a pleiotropic phenotype that in some respects resembles that of rpoS (katF) mutants. This led us to examine whether ppGpp is a positive regulator of sigma s synthesis. sigma s is a stationary-phase-specific sigma factor that is encoded by the rpoS gene. We found that a ppGpp-deficient strain is defective in sigma s synthesis as cells enter stationary phase in a rich medium, as judged by immunoblots. Under more-defined conditions we found that the stimulation of sigma s synthesis following glucose, phosphate, or amino acid starvation of wild-type strains is greatly reduced in a strain lacking ppGpp. The failure of ppGpp-deficient strains to synthesize sigma s in response to these starvation regimens could indicate a general defect in gene expression rather than a specific dependence of rpoS expression on ppGpp. We therefore tested the effect of artificially elevated ppGpp levels on sigma s synthesis either with mutations that impair ppGpp decay or by gratuitously inducing ppGpp synthesis with a Ptac::relA fusion. In both instances, we observed enhanced sigma s synthesis. Apparently, ppGpp can activate sigma s synthesis under conditions of nutrient sufficiency as well as during entry into stationary phase. This finding suggests that changes in ppGpp levels function both as a signal of imminent stationary phase and as a signal of perturbations in steady-state growth.
    rpoS
    Sigma factor
    Stringent response
    Sigma
    We recently implemented a bioinformatics pipeline that can uncover novel, but rare, riboswitch candidates as well as other noncoding RNA structures in bacteria. A prominent candidate revealed by our initial search efforts was called the ‘thiS motif’ because of its frequent association with a gene coding for the ThiS protein, which delivers sulfur to form the thiazole moiety of the thiamin precursor HET-P. In the current report, we describe biochemical and genetic data demonstrating that thiS motif RNAs function as sensors of the thiamin precursor HMP-PP, which is fused with HET-P ultimately to form the final active coenzyme thiamin pyrophosphate (TPP). HMP-PP riboswitches exhibit a distinctive architecture wherein an unusually small ligand-sensing aptamer is almost entirely embedded within an otherwise classic intrinsic transcription terminator stem. This arrangement yields remarkably compact genetic switches that bacteria use to tune the levels of thiamin precursors during the biosynthesis of this universally distributed coenzyme.
    Riboswitch
    Terminator (solar)
    Aptamer
    Thiamine pyrophosphate
    Synthetic Biology
    Transcription
    Citations (35)