Fbxw11 Variants Promotes Proliferation of Leukemia Cells By Activating the NF-κB Signaling Pathway
0
Citation
0
Reference
10
Related Paper
Ring finger
Ubiquitin-conjugating enzyme
RING finger domain
Ubiquitin-Protein Ligases
Cite
Citations (20)
Comment on: Kawabe H, Neeb A, Dimova K, Young SM Jr, Takeda M, Katsurabayashi S, et al. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 2010; 65:358-72.
NEDD4
Neurite
Ubiquitin-Protein Ligases
Cite
Citations (17)
Colony-stimulating factor
Cite
Citations (0)
Abstract TNFAIP8-like 2 (TIPE2) is a negative regulator of immune receptor signaling that maintains immune homeostasis. Dysregulated TIPE2 expression has been observed in several types of human immunological disorders. However, how TIPE2 expression is regulated remains to be determined. We report in this study that the SCFβ-TrCP E3 ubiquitin ligase regulates TIPE2 protein abundance by targeting it for ubiquitination and subsequent degradation via the 26S proteasome. Silencing of either cullin-1 or β-TrCP1 resulted in increased levels of TIPE2 in immune cells. TAK1 phosphorylated the Ser3 in the noncanonical degron motif of TIPE2 to trigger its interaction with β-TrCP for subsequent ubiquitination and degradation. Importantly, the amount of TIPE2 protein in immune cells determined the strength of TLR 4–induced signaling and downstream gene expression. Thus, our study has uncovered a mechanism by which SCFβ-TrCP E3 ubiquitin ligase regulates TLR responses.
Degron
Cullin
Immune receptor
Protein Degradation
Cite
Citations (14)
Lineage (genetic)
Cell lineage
Cite
Citations (44)
RNF12/RLIM is a RING domain-containing E3 ubiquitin ligase whose function has only begun to be elucidated recently. Although RLIM was reported to play important roles in some biological processes such as imprinted X-chromosome inactivation and regulation of TGF-β pathway etc., other functions of RLIM are largely unknown. Here, we identified RLIM as a novel E3 ubiquitin ligase for c-Myc, one of the most frequently deregulated oncoproteins in human cancers. RLIM associates with c-Myc in vivo and in vitro independently of the E3 ligase activity of RLIM. Moreover, RLIM promotes the polyubiquitination of c-Myc protein independently of Ser62 and Thr58 phosphorylation of c-Myc. However, RLIM-mediated ubiquitination does not affect c-Myc stability. Instead, RLIM inhibits the transcriptional activity of c-Myc through which RLIM restrains cell proliferation. Our results suggest that RLIM may function as a tumor suppressor by controlling the activity of c-Myc oncoprotein.
Cite
Citations (20)
Kaposi's Sarcoma-Associated Herpesvirus LANA Modulates the Stability of the E3 Ubiquitin Ligase RLIM
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. In a previous study, we have identified LANA-interacting proteins using a protein array screen. Here, we explore the effect of LANA on the stability and activity of RLIM (RING finger LIM-domain-interacting protein, encoded by the RNF12 gene), a novel LANA-interacting protein identified in that protein screen. RLIM is an E3 ubiquitin ligase that leads to the ubiquitination and degradation of several transcription regulators, such as LMO2, LMO4, LHX2, LHX3, LDB1, and the telomeric protein TRF1. Expression of LANA leads to downregulation of RLIM protein levels. This LANA-mediated RLIM degradation is blocked in the presence of the proteasome inhibitor, MG132. Therefore, the interaction between LANA and RLIM could be detected in coimmunoprecipitation assay only in the presence of MG132 to prevent RLIM degradation. A RING finger mutant RLIM is resistant to LANA-mediated degradation, suggesting that LANA promotes RLIM autoubiquitination. Interestingly, we found that LANA enhanced the degradation of some RLIM substrates, such as LDB1 and LMO2, and prevented RLIM-mediated degradation of others, such as LHX3 and TRF1. We also show that transcription regulation by RLIM substrates is modulated by LANA. RLIM substrates are assembled into multiprotein transcription regulator complexes that regulate the expression of many cellular genes. Therefore, our study identified another way KSHV can modulate cellular gene expression.IMPORTANCE E3 ubiquitin ligases mark their substrates for degradation and therefore control the cellular abundance of their substrates. RLIM is an E3 ubiquitin ligase that leads to the ubiquitination and degradation of several transcription regulators, such as LMO2, LMO4, LHX2, LHX3, LDB1, and the telomeric protein TRF1. Here, we show that the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded LANA protein enhances the ubiquitin ligase activity of RLIM, leading to enhanced RLIM autoubiquitination and degradation. Interestingly, LANA enhanced the degradation of some RLIM substrates, such as LDB1 and LMO2, and prevented RLIM-mediated degradation of others, such as LHX3 and TRF1. In agreement with protein stability of RLIM substrates, we found that LANA modulates transcription by LHX3-LDB1 complex and suggest additional ways LANA can modulate cellular gene expression. Our study adds another way a viral protein can regulate cellular protein stability, by enhancing the autoubiquitination and degradation of an E3 ubiquitin ligase.
Ubiquitin-Protein Ligases
Kaposi's sarcoma-associated herpesvirus
Cite
Citations (7)
Ring finger
RING finger domain
PHD finger
Ubiquitin-Protein Ligases
Cite
Citations (378)
Abstract The Skp1‐Cul1‐F‐box protein (SCF) E3 ligase complex is one of the largest ubiquitin E3 ligase families. FBXL19, a F‐box protein in SCF FBXL19 E3 ligase complex, regulates a variety of cellular responses including cell migration. We have shown that FBXL19 is not stable and its degradation is mediated by the ubiquitin–proteasome system, while the ubiquitin E3 ligase for FBXL19 ubiquitination and degradation has not been identified. In the study, we discovered that a new ubiquitin E3 ligase, SCF FBXW17 , ubiquitinates and induces FBXL19 degradation. Exogenous FBXW17 targets FBXL19 for its ubiquitination and degradation. Lysine 114 in FBXL19 is a potential ubiquitin acceptor site. Acetylation of FBXL19 attenuated SCF FBXW17 ‐mediated FBXL19 degradation. SCF FBXL19 E3 ligase reduced Rac1 levels and cell migration, while the effects were attenuated by exogenous FBXW17. Downregulation of FBXW17 attenuated lysophosphatidic acid‐induced lamellipodia formation and Rac1 accumulation at migration leading edge. Taken together with our previous studies, FBXL19 is degraded by the ubiquitin–proteasome system and its site‐specific ubiquitination is mediated by SCF FBXW17 E3 ligase, which promotes cell migration.
DDB1
F-box protein
Cite
Citations (9)
This chapter contains sections titled: Introduction: Mode of AHR Action beyond that of a Transcription Factor The Ubiquitin-Proteasome System in the Regulation of AHR Turnover AHR is a Ligand-Dependent E3 Ubiquitin Ligase AHR as a Signal-Sensing Ubiquitin ligase Complex Conclusion Acknowledgments References
Transcription
Cite
Citations (5)