Architecture of the yeast small subunit processome
127
Citation
62
Reference
10
Related Paper
Citation Trend
Abstract:
The small subunit (SSU) processome, a large ribonucleoprotein particle, organizes the assembly of the eukaryotic small ribosomal subunit by coordinating the folding, cleavage, and modification of nascent pre-ribosomal RNA (rRNA). Here, we present the cryo-electron microscopy structure of the yeast SSU processome at 5.1-angstrom resolution. The structure reveals how large ribosome biogenesis complexes assist the 5' external transcribed spacer and U3 small nucleolar RNA in providing an intertwined RNA-protein assembly platform for the separate maturation of 18S rRNA domains. The strategic placement of a molecular motor at the center of the particle further suggests a mechanism for mediating conformational changes within this giant particle. This study provides a structural framework for a mechanistic understanding of eukaryotic ribosome assembly in the model organism Saccharomyces cerevisiae.Keywords:
ribosome biogenesis
Eukaryotic Ribosome
Small nucleolar RNA
5.8S ribosomal RNA
The rate of ribosome biogenesis, which is downregulated in terminally differentiated cells and upregulated in most cancers, regulates the growth rate and is linked to the cell's proliferative potential. The U3 box C/D small nucleolar RNP (snoRNP) is an integral component of the small subunit (SSU) processome and is essential for 18S rRNA processing. We show that U3 snoRNP assembly, and therefore U3 snoRNA accumulation, is regulated through the U3-specific protein hU3-55K. Furthermore, we report that the levels of several SSU processome components, including the U3 snoRNA but not other box C/D snoRNAs, are specifically downregulated during human lung (CaCo-2) and colon (CaLu-3) epithelial cell differentiation. c-Myc is reported to play an integral role in regulating ribosome production by controlling the expression of many ribosome biogenesis factors. Our data, however, indicate that this regulation is not dependent on c-Myc since the level of this protein does not change during epithelial cell differentiation. In addition, depletion of c-Myc had only a mild affect on the levels of SSU processome proteins. CaCo-2 cells are colon adenocarcinoma epithelial cells that are believed to revert to their precancerous state during differentiation. This suggests a significant increase in the levels of specific SSU processome components during tumorogenesis.
Small nucleolar RNA
ribosome biogenesis
Cite
Citations (21)
Ribosome biogenesis is one cell function-defining process. It depends on efficient transcription of rDNAs in the nucleolus as well as on the cytosolic synthesis of ribosomal proteins. For newly transcribed rRNA modification and ribosomal protein assembly, so-called small nucleolar RNAs (snoRNAs) and ribosome biogenesis factors (RBFs) are required. For both, an inventory was established for model systems like yeast and humans. For plants, many assignments are based on predictions. Here, RNA deep sequencing after nuclei enrichment was combined with single molecule species detection by northern blot and in vivo fluorescence in situ hybridization (FISH)-based localization studies. In addition, the occurrence and abundance of selected snoRNAs in different tissues were determined. These approaches confirm the presence of most of the database-deposited snoRNAs in cell cultures, but some of them are localized in the cytosol rather than in the nucleus. Further, for the explored snoRNA examples, differences in their abundance in different tissues were observed, suggesting a tissue-specific function of some snoRNAs. Thus, based on prediction and experimental confirmation, many plant snoRNAs can be proposed, while it cannot be excluded that some of the proposed snoRNAs perform alternative functions than are involved in rRNA modification.
Small nucleolar RNA
ribosome biogenesis
Cite
Citations (20)
Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae. We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.
ribosome biogenesis
Nucleoplasm
Eukaryotic Ribosome
Ribosomal protein
5.8S ribosomal RNA
Cite
Citations (88)
ribosome biogenesis
Eukaryotic Ribosome
Ribosomal protein
5.8S ribosomal RNA
Cite
Citations (9)
Eukaryotic ribosome biogenesis is initiated with the transcription of pre-ribosomal RNA at the 5’ external transcribed spacer, which directs the early association of assembly factors but is absent from the mature ribosome. The subsequent co-transcriptional association of ribosome assembly factors with pre-ribosomal RNA results in the formation of the small subunit processome. Here we show that stable rRNA domains of the small ribosomal subunit can independently recruit their own biogenesis factors in vivo. The final assembly and compaction of the small subunit processome requires the presence of the 5’ external transcribed spacer RNA and all ribosomal RNA domains. Additionally, our cryo-electron microscopy structure of the earliest nucleolar pre-ribosomal assembly - the 5’ external transcribed spacer ribonucleoprotein – provides a mechanism for how conformational changes in multi-protein complexes can be employed to regulate the accessibility of binding sites and therefore define the chronology of maturation events during early stages of ribosome assembly.
ribosome biogenesis
Eukaryotic Ribosome
5.8S ribosomal RNA
RNA polymerase I
Ribosomal protein
Transcription
Cite
Citations (39)
Small nucleolar RNA
ribosome biogenesis
Cite
Citations (15)
ribosome biogenesis
Ribosomal protein
Eukaryotic Ribosome
5.8S ribosomal RNA
5S ribosomal RNA
Cite
Citations (89)
ribosome biogenesis
Eukaryotic Ribosome
5.8S ribosomal RNA
Ribosomal protein
Cite
Citations (2)
Ribosomes are ubiquitous and abundant molecular machines composed of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins). They play a central role in the cell by translating the genetic code in mRNA to form polypeptides. Because of their large size and the complexity of molecular interactions within ribosomes, we do not still fully understand how they are synthesized in the cell. Yet, a thorough knowledge of ribosome biogenesis is crucial to understand cellular homeostasis and various disease states including ribosomopathies and cancer. In addition, ribosomes serve as an interesting paradigm to understand the principles that dictate the formation and function of the many different ribonucleoprotein particles that play vital roles in the cell. In addition to the rRNA and r-protein components, trans-acting assembly factors play indispensable roles in synthesizing functional ribosomes. Fundamentally, ribosome biogenesis is driven by a network of molecular interactions that evolve in time and space, as assembly progresses from the nucleolus to the cytoplasm. We sought to gain a deeper understanding of ribosome biogenesis in Saccharomyces cerevisiae by investigating the molecular interactions that drive ribosome assembly. Recent structural studies have revealed a number of such molecular interactions at high resolution. Based on these, our investigation was carried out from the perspectives of all three players that are involved in constructing ribosomes, with a specific emphasis on eukaryote-specific elements of rRNAs and r-proteins. From the standpoint of rRNA, we performed the first systematic study to investigate the potential functions of nearly all of the eukaryotic rRNA expansion segments in the yeast large ribosomal subunit. We showed that most of them are indispensable and play vital roles in ribosome biogenesis. Based on the steps of ribosome biogenesis in which each of them participates, we showed that there is neighborhood-specific functional clustering of rRNA and r-protein interactions that drive ribosome assembly. Further, we found evidence for possible functional co-evolution of eukaryotic rRNA and eukaryote-specific elements of r-protein. From the standpoint of r-protein, we used rpL5 as a paradigm for constantly evolving molecular interactions as assembly progresses. Apart from recapitulating Diamond-Blackfan anemia missense mutations in yeast, we characterized interactions formed by specific regions of rpL5 and propose that these interactions potentially govern the loading of 5S RNP en bloc to the nascent large ribosomal subunit, to ensure proper rotation of the 5S RNP during biogenesis, and to further recruit proteins necessary for the test drive of subunits in the cytoplasm. From the standpoint of assembly factors, we analyzed a so-called group of ITS2 cluster proteins, Nop15, Cic1 and Rlp7 and identified the extensive protein-protein interactions and analyzed protein-RNA interactions that they make. Using our data, we were able to localize Rlp7 to the ITS2 spacer in the pre-rRNA and to identify potential mechanisms for their function. Having identified a network of molecular interactions, we suggest that these proteins orchestrate proper folding of rRNA through this network, and stabilize and facilitate the early steps of assembly. Further, based on their location in the preribosome, these factors might serve to ensure proper progression of early steps of assembly to enable subsequent processing of the ITS2 spacer in the middle steps, possibly by recruiting the ATPase Has1. Thus, we have investigated early nucleolar and late nuclear steps of ribosome assembly in the light of molecular interactions formed by rRNA, r-protein and assembly factors that participate in eukaryotic ribosome assembly. Lessons that emerged from this study and tools developed in the process provide a starting point for further investigations pertaining to the roles of eukaryote-specific segments of molecules that participate in ribosome biogenesis, and serve as a paradigm for how a dynamic network of molecular interactions can drive the assembly of complex macromolecular structures.
ribosome biogenesis
Eukaryotic Ribosome
Ribosomal protein
5.8S ribosomal RNA
Cite
Citations (0)
ribosome biogenesis
5.8S ribosomal RNA
Ribosomal protein
Eukaryotic Ribosome
Eukaryote
Cite
Citations (88)