Increased γH2AX Foci in Old Hematopoietic Stem Cells Are Independent of the DNA Damage Response and Linked to Inefficient DNA Replication/Transcription
Johanna FlachSietske T. BakkerPauline C. ConroyDamien ReynaudMichelle M. Le BeauCiaran G. MorrisonEmmanuelle Passegué
0
Citation
0
Reference
10
Related Paper
Keywords:
PARP1
PARP1
XRCC1
Comet Assay
Cite
Citations (12)
Millions of DNA-damaging lesions occur every day in each cell of our bodies due to various stresses. The failure to detect and accurately repair these lesions can give rise to cells with high levels of endogenous DNA damage, deleterious mutations, or genomic aberrations. Such genomic instability can lead to the activation of specific signaling pathways, including the DNA damage response (DDR) pathway. Constitutive activation of DDR proteins has been observed in human tumor specimens from different cancer stages, including precancerous and metastatic cancers, although not in normal tissues. The tumor-suppressive role of DDR activity during the premalignant stage has been studied, and strong evidence is emerging for an oncogenic role for DDR proteins such as DNA-PK and CHK1 during the later stages of tumor development. However, the majority of current cancer therapies induce DNA damage, potentially exacerbating protumorigenic genomic instability and enabling the development of resistance. Therefore, elucidating the molecular basis of DNA damage-mediated genomic instability and its role in tumorigenesis is critical. Finally, I discuss the potential existence of distinct DNA damage thresholds at various stages of tumorigenesis and what the ramifications of such thresholds would be, including the ambiguous role of the DDR pathway in human cancers, therapy-induced malignancies, and enhanced therapies.
Cite
Citations (127)
PARP1 and p53 are key players in maintaining genomic stability, but their interplay is still not fully understood. We investigated the impact of PARP1 knockout on the DNA damage response after ionizing radiation (IR) by comparing a U2OS-based PARP1-knockout cell line, established by using the genome-editing system CRISPR/Cas9, with its wild-type counterpart. We intended to gain more insight into the impact of PARP1 on the transcriptional level under basal conditions, after low dose (1 Gy) and high dose (10 Gy) DNA damage induced by IR, aiming to reveal the potential connections between the involved pathways. In the absence of additionally induced DNA damage, lacking PARP1 led to an increased up-regulation of CDKN1A (p21), which caused a G1 arrest and slightly diminished cell proliferation. While a small but comparable transcriptional DNA damage response was observed upon 1 Gy IR in both cell lines, a pronounced transcriptional induction of p53 target genes was evident after treatment with 10 Gy IR exclusively in PARP1-proficient cells, suggesting that PARP1 facilitates the p53 signaling response after IR. Additionally, PARP1 appeared to be required for the ATM-dependent activation of PLK3, which in turn activates p53, leading to its transcriptional damage response. Our results support the involvement of PARP1 activation among the first steps in IR-induced DNA damage response.
PARP1
Gadd45
Cite
Citations (15)
Cells exhibiting radiation-induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.
Chromosome instability
genomic DNA
Cite
Citations (14)
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
genomic DNA
Cite
Citations (139)
SOS response
Cite
Citations (2)
The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production.
PARP1
ADP-ribosylation
Cite
Citations (37)
Endosulfan (ES) is an organochlorine pesticide, speculated to be associated with chromosomal abnormalities and diseases in humans. However, very little is known about the mechanism of its genotoxicity. Using in vivo, ex vivo and in vitro model systems, we show that exposure to ES induces reactive oxygen species (ROS) in a concentration and time-dependent manner. The generation of ROS results in DNA double-strand breaks either directly or in a replication-dependent manner, both in mice and human cells. Importantly, ES-induced DNA damage evokes DNA damage response, resulting in elevated levels of classical non-homologous DNA endjoining (NHEJ), the predominant double-strand break repair pathway in higher eukaryotes. Sequence analyses of NHEJ junctions revealed that ES treatment results in extensive processing of broken DNA, culminating in increased and long junctional deletions, thereby favoring erroneous repair. We also find that exposure to ES leads to significant increase in microhomology-mediated end joining (MMEJ), a LIGASE III-dependent alternative repair pathway. Therefore, we demonstrate that ES induces DNA damage and genomic instability, alters DNA damage response thereby promoting erroneous DNA repair.
PARP1
Cite
Citations (47)
DNA Damage Repair
Cite
Citations (0)