logo
    MSmetrix: accurate untrained method for longitudinal lesion segmentation
    1
    Citation
    0
    Reference
    2
    Related Paper
    Citation Trend
    Accurate lesion segmentation is important for measurements of lesion load and atrophy in subjects with multiple sclerosis (MS). International MS lesion challenges show a preference of convolutional neural networks (CNN) strategies, such as nicMSlesions. However, since the software is trained on fairly homogenous training data, we aimed to test the performance of nicMSlesions in an independent dataset with manual and other automatic lesion segmentations to determine whether this method is suitable for larger, multi-center studies. Manual lesion segmentation was performed in fourteen subjects with MS on sagittal 3D FLAIR images from a 3T GE whole-body scanner with 8-channel head coil. We compared five different categories of automated lesion segmentation methods for their volumetric and spatial agreement with manual segmentation: (i) unsupervised, untrained (LesionTOADS); (ii) supervised, untrained (LST-LPA and nicMSlesions with default settings); (iii) supervised, untrained with threshold adjustment (LST-LPA optimized for current data); (iv) supervised, trained with leave-one-out cross-validation on fourteen subjects with MS (nicMSlesions and BIANCA); and (v) supervised, trained on a single subject with MS (nicMSlesions). Volumetric accuracy was determined by the intra-class correlation coefficient (ICC) and spatial accuracy by Dice's similarity index (SI). Volumes and SI were compared between methods using repeated measures ANOVA or Friedman tests with post-hoc pairwise comparison. The best volumetric and spatial agreement with manual was obtained with the supervised and trained methods nicMSlesions and BIANCA (ICC absolute agreement > 0.968 and median SI > 0.643) and the worst with the unsupervised, untrained method LesionTOADS (ICC absolute agreement = 0.140 and median SI = 0.444). Agreement with manual in the single-subject network training of nicMSlesions was poor for input with low lesion volumes (i.e. two subjects with lesion volumes ≤ 3.0 ml). For the other twelve subjects, ICC varied from 0.593 to 0.973 and median SI varied from 0.535 to 0.606. In all cases, the single-subject trained nicMSlesions segmentations outperformed LesionTOADS, and in almost all cases it also outperformed LST-LPA. Input from only one subject to re-train the deep learning CNN nicMSlesions is sufficient for adequate lesion segmentation, with on average higher volumetric and spatial agreement with manual than obtained with the untrained methods LesionTOADS and LST-LPA.
    Sørensen–Dice coefficient
    Fluid-attenuated inversion recovery
    Citations (33)
    Purpose: Lesion volume is a meaningful measure in multiple sclerosis (MS) prognosis. Manual lesion segmentation for computing volume in a single or multiple time points is time consuming and suffers from intra and inter-observer variability. Methods: In this paper, we present MSmetrix-long: a joint expectation-maximization (EM) framework for two time point white matter (WM) lesion segmentation. MSmetrix-long takes as input a 3D T1-weighted and a 3D FLAIR MR image and segments lesions in three steps: (1) cross-sectional lesion segmentation of the two time points; (2) creation of difference image, which is used to model the lesion evolution; (3) a joint EM lesion segmentation framework that uses output of step (1) and step (2) to provide the final lesion segmentation. The accuracy (Dice score) and reproducibility (absolute lesion volume difference) of MSmetrix-long is evaluated using two datasets. Results: On the first dataset, the median Dice score between MSmetrix-long and expert lesion segmentation was 0.63 and the Pearson correlation coefficient (PCC) was equal to 0.96. On the second dataset, the median absolute volume difference was 0.11 ml. Conclusions: MSmetrix-long is accurate and consistent in segmenting MS lesions. Also, MSmetrix-long compares favorably with the publicly available longitudinal MS lesion segmentation algorithm of Lesion Segmentation Toolbox.
    Time point
    Fluid-attenuated inversion recovery
    Citations (38)