Performance of diethylene glycol based particle counters in the sub 3 nm size range [Discussion paper]
Daniela WimmerKatrianne LehtipaloAlessandro FranchinJuha KangasluomaF. KreisslAndreas KürtenAgnieszka KupcAxel MetzgerJyri MikkiläTuukka PetäjäFrancesco RiccobonoJoonas VanhanenMarkku KulmalaJoachim Curtius
0
Citation
0
Reference
20
Related Paper
Abstract:
When studying new particle formation, the uncertainty in determining the true nucleation rate is considerably reduced when using Condensation Particle Counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently CPCs, able to reliably detect particles below 2 nm in size and even close to 1 nm became available. The corrections needed to calculate nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size.
Here we describe the development of two continuous flow CPCs using diethylene glycol (DEG) as the working fluid. The design is based on two TSI 3776 counters. Several sets of measurements to characterize their performance at different temperature settings were carried out. Furthermore two mixing-type Particle Size Magnifiers (PSM) A09 from Airmodus were characterized in parallel. One PSM was operated at the highest mixing ratio (1 L min−1 saturator flow), and the other was operated in a scanning mode, where the mixing ratios are changed periodically, resulting in a range of cut-off sizes. Different test aerosols were generated using a nano-Differential Mobility Analyzer (nano-DMA) or a high resolution DMA, to obtain detection efficiency curves for all four CPCs. One calibration setup included a high resolution mass spectrometer (APi-TOF) for the determination of the chemical composition of the generated clusters. The lowest cut-off sizes were achieved with negatively charged ammonium sulphate clusters, resulting in cut-offs of 1.4 nm for the laminar flow CPCs and 1.2 and 1.1 nm for the PSMs. A comparison of one of the laminar-flow CPCs and one of the PSMs measuring ambient and laboratory air showed good agreement between the instruments.Keywords:
Differential mobility analyzer
Diethylene glycol
Particle (ecology)
Cite
Abstract. When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently, CPCs able to reliably detect particles below 2 nm in size and even close to 1 nm became available. Using these instruments, the corrections needed for calculating nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous-flow CPCs using diethylene glycol (DEG) as the working fluid. The design is based on two TSI 3776 counters. Several sets of measurements to characterize their performance at different temperature settings were carried out. Furthermore, two mixing-type particle size magnifiers (PSM) A09 from Airmodus were characterized in parallel. One PSM was operated at the highest mixing ratio (1 L min−1 saturator flow), and the other was operated in a scanning mode, where the mixing ratios are changed periodically, resulting in a range of cut-off sizes. The mixing ratios are determined by varying the saturator flow, where the aerosol flow stays constant at 2.5 L min−1. Different test aerosols were generated using a nano-differential mobility analyser (nano-DMA) or a high-resolution DMA, to obtain detection efficiency curves for all four CPCs. One calibration setup included a high-resolution mass spectrometer (APi-TOF) for the determination of the chemical composition of the generated clusters. The lowest cut-off sizes were achieved with negatively charged ammonium sulfate clusters, resulting in cut-offs of 1.4 nm for the laminar flow CPCs and 1.2 and 1.1 nm for the PSMs. A comparison of one of the laminar-flow CPCs and one of the PSMs measuring ambient and laboratory air showed good agreement between the instruments.
Diethylene glycol
Particle (ecology)
Cite
Citations (72)
Several modifications of the particle size magnifier (PSM) developed by Okuyama et al. have been introduced recently for detection of particles at diameters of 1 nm and below. However, their evaluation has been incomplete. Here we provide the first direct measurements of counting efficiencies near unity below 2 nm. We use the modified PSM described by Sgro and Fernández de la Mora, which separates thermally the PSM's original vapor generator from the water-cooled growth chamber by means of a narrow and short T where turbulent mixing with the aerosol takes place. The counting efficiency is seen to depend greatly on the aerosol flow, the amount of vapor, and temperature. With ethylene glycol vapor, under optimal conditions, the counting efficiency is 100% down to 1.6 nm (actual diameter of 1.2 nm), and negative particles are more easily activated than positive particles. The improved PSM is applied to the measurement of gold nanoparticle size distributions, and the results show it is a powerful aerosol detector for nanoparticles.
Particle (ecology)
Cite
Citations (63)
Abstract. Measurements of aerosol dynamics in the sub-10 nm size range are crucially important for quantifying the impact of new particle formation onto the global budget of cloud condensation nuclei. Here we present the development and characterization of a differential mobility analyzer train (DMA-train), operating six DMAs in parallel for high-time-resolution particle-size-distribution measurements below 10 nm. The DMAs are operated at six different but fixed voltages and hence sizes, together with six state-of-the-art condensation particle counters (CPCs). Two Airmodus A10 particle size magnifiers (PSM) are used for channels below 2.5 nm while sizes above 2.5 nm are detected by TSI 3776 butanol-based or TSI 3788 water-based CPCs. We report the transfer functions and characteristics of six identical Grimm S-DMAs as well as the calibration of a butanol-based TSI model 3776 CPC, a water-based TSI model 3788 CPC and an Airmodus A10 PSM. We find cutoff diameters similar to those reported in the literature. The performance of the DMA-train is tested with a rapidly changing aerosol of a tungsten oxide particle generator during warmup. Additionally we report a measurement of new particle formation taken during a nucleation event in the CLOUD chamber experiment at CERN. We find that the DMA-train is able to bridge the gap between currently well-established measurement techniques in the cluster–particle transition regime, providing high time resolution and accurate size information of neutral and charged particles even at atmospheric particle concentrations.
Differential mobility analyzer
Particle (ecology)
Cloud condensation nuclei
Condensation particle counter
Electrometer
Cite
Citations (79)
Particle counter
Counting efficiency
Particle (ecology)
Polystyrene
Dispersity
Cite
Citations (10)
In order to determine wide ranges of particle size distribution, a new measuring method combined both the light scattering and the electrostatic separation-condensation nuclei was experimentally investigated.From the experiments, it was confirmed that by using a sensitive optical particle counter connected to a digital system, the size range between 10nm and 10μm in diameter was sufficiently measurable.Furthermore, having the same counting particle number criteria in the whole size range, this method is remarkably applicable as a more accurate measurement in practice.
Cloud condensation nuclei
Particle (ecology)
Condensation particle counter
Particle counter
Particle beam
Cite
Citations (0)
Differential mobility analyzer
Particle (ecology)
Nanometre
Tandem
Cite
Citations (19)
Supersaturation
Particle (ecology)
Condenser (optics)
Dispersity
Cite
Citations (47)
The counting efficiencies of 2 different types of diethylene-glycol (DEG) based Condensation Particle Counters (CPCs) is described and discussed. The development of two laminar flow CPCs, sensitive in the size range below 3 nm is described. The two types used are a modified TSI 3776 laminar diffusion-type CPC operating with DEG instead of butanol (DEG-CPC) and a turbulent mixing Particle Size Magnifier (PSM) A09 from Airmodus. For each of the two types two different systems with slightly different settings have been investigated, respectively. The two laminar flow CPCs were operated at different temperature settings, where one of the mixing type systems was running at a fixed saturation ratio and therefore had a fixed cut-off diameter and the other one was opaerated in scanning mode. Various different test aerosols have been generated to obtain cut-off curves for all four different CPCs. The main focus was on measuring the counting efficiencies under well controlled laboratory conditions. Therefore a high resolution mass spectrometer was used in the setup as well.
Diethylene glycol
Particle (ecology)
Counting efficiency
Cite
Citations (2)
Differential mobility analyzer
Electrical mobility
Ion-mobility spectrometry
Cite
Citations (22)
Particle (ecology)
Differential mobility analyzer
Condensation particle counter
Cite
Citations (65)