Multiple levels of regulation of megakaryocytopoiesis.
24
Citation
0
Reference
10
Related Paper
Abstract:
A working hypothesis for the regulation of megakaryocytopoiesis is described on the basis of current data. The hypothesis proposes that in vivo megakaryocytes are generated by 1) the expansion of clonable progenitor cells into immature megakaryocytes by locally produced (and regulated) interleukin-3 (IL-3) and 2) the development and maturation of immature megakaryocytes by a dual system; by a lineage specific mechanism involving thrombopoietic stimuli in the steady state and thrombocytopenic conditions, and by a lineage nonspecific mechanism via IL-3 in damaged or reconstituting marrow. The hypothesis predicts that if IL-3 is a significant in vivo regulator of megakaryocyte formation and development, receptor for IL-3 should be present on megakaryocytes and may be vestigially on platelets. Small but significant levels of 125I IL-3 were found to bind to platelets from normal mice. The level of binding on platelets was found to be enhanced sevenfold from mice that had received high levels of irradiation followed by bone marrow transplantation. This contrasted with a twofold increase in the level of binding to platelets from mice made acutely thrombocytopenic with antiplatelet serum. The data suggest that IL-3 may be involved in the in vivo regulation of murine megakaryocytopoiesis and may be a significant factor in rebound thrombopoiesis following bone marrow damage.Keywords:
Megakaryocytopoiesis
Thrombopoiesis
Cite
Cite
Citations (9)
Thrombopoiesis
Megakaryocytopoiesis
Mean platelet volume
Cite
Citations (4)
Thrombopoiesis
Megakaryocytopoiesis
Blood cell
Cite
Citations (2)
Abstract Thrombosis leads to platelet activation and subsequent degradation; therefore, replenishment of platelets from hematopoietic stem/progenitor cells (HSPCs) is needed to maintain the physiological level of circulating platelets. Platelet-derived microparticles (PMPs) are protein- and RNA-containing vesicles released from activated platelets. We hypothesized that factors carried by PMPs might influence the production of platelets from HSPCs, in a positive feedback fashion. Here we show that, during mouse acute liver injury, the density of megakaryocyte in the bone marrow increases following an increase in circulating PMPs, but without thrombopoietin (TPO) upregulation. In vitro, PMPs are internalized by HSPCs and drive them toward a megakaryocytic fate. Mechanistically, miR-1915-3p, a miRNA highly enriched in PMPs, is transported to target cells and suppresses the expression levels of Rho GTPase family member B, thereby inducing megakaryopoiesis. In addition, direct injection of PMPs into irradiated mice increases the number of megakaryocytes and platelets without affecting TPO levels. In conclusion, our data reveal that PMPs have a role in promoting megakaryocytic differentiation and platelet production.
Thrombopoiesis
Megakaryocytopoiesis
Cite
Citations (68)
Megakaryocytopoiesis
Thrombopoiesis
Progenitor
Cite
Citations (172)
Circulating platelets were thought to arise solely from the protrusion and fragmentation of megakaryocyte cytoplasm. Now, Nishimura et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201410052) show that platelet release from megakaryocytes can be induced by interleukin-1α (IL-1α) via a new rupture mechanism, which yields higher platelet numbers, occurs independently of the key regulator of megakaryopoiesis thrombopoietin, and may occur during situations of acute platelet need.
Thrombopoiesis
Megakaryocytopoiesis
Fragmentation
Cite
Citations (11)
Megakaryocytopoiesis
Thrombopoiesis
Cite
Citations (11)
Megakaryocytopoiesis
Thrombopoiesis
Granulopoiesis
Thrombocytosis
Cite
Citations (16)
Thrombopoiesis
Megakaryocytopoiesis
Cite
Citations (111)
Megakaryocytopoiesis
Thrombopoiesis
Cite
Citations (0)