logo
    Isothermal Titration Calorimetry for Studying Protein–Ligand Interactions
    77
    Citation
    16
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    Isothermal Titration Calorimetry
    Isothermal process
    Stoichiometry
    Characterization
    Isothermal Titration Calorimetry
    Isothermal microcalorimetry
    Reaction calorimeter
    Calorimeter (particle physics)
    Enzyme Kinetics
    Reaction rate
    Abstract In isothermal titration calorimetry, the heat produced or absorbed when a ligand binds to a biological macromolecule is measured and is used to characterize the energetics of the interaction. All of the thermodynamic quantities that characterize the binding reaction can be determined, and additional information on changes in protonation, and thus pH dependence, can also be studied.
    Isothermal Titration Calorimetry
    Energetics
    Isothermal process
    Citations (0)
    生体分子間の相互作用解析法として等温滴定型カロリメトリー(Isothermal Titration Calorimetry; ITC)が古くから用いられている.近年,検出感度の向上と測定サンプルの微量化を達成した測定装置が市販されるようになったことから,今後その利用頻度はさらに高くなっていくものと思われる.ITC測定は,一度の測定で相互作用の熱力学的パラメータのフルセットを得ることができるという点において,表面プラズモン共鳴法やその他の分光学的方法による相互作用解析系とは一線を画している.本稿では筆者らが行った糖質加水分解酵素–基質間相互作用解析の例を中心に,ITC測定の原理と一般的な使用法に加えて,酵素の基質結合メカニズムに迫るより詳細な解析法について述べる.
    Isothermal Titration Calorimetry
    Isothermal process
    Isothermal Titration Calorimetry
    Isothermal process
    Enzyme Kinetics
    Reaction calorimeter
    Isothermal microcalorimetry
    Citations (89)
    The heat capacity of technetium metal has been measured from 2.1 K to 293 K using relaxation calorimetry and the enthalpy increment up to 1700 K using drop calorimetry. The low-temperature calorimetry measurements revealed a superconducting transition temperature of TC = (7.76 ± 0.08) K. The zero-degree Debye temperature(θE) and the electronic heat capacity coefficient (γe) of the normal state were derived as (307 ± 5) K and (4.22 ± 0.20) mJ·K−2·mol−1, respectively. The standard entropy of the superconducting standard state was derived as S m◦ (298.15) = (40.9 ± 1.3) J·K−1·mol−1. The fitting of enthalpy-increment data together with high-temperature heat capacity data reported in literature yielded a heat capacity equation up to 1700 K.
    Debye model
    Standard molar entropy
    Specific heat
    Citations (0)