Dicer is not a nucleocytoplasmic shuttling protein.
M. Udell ChristianTania AuchynnikavaDinko PavlinićAndreas BuneßRappsilber JuriBenes VladimirAllshire RobinO’Carroll Dónal
0
Citation
0
Reference
20
Related Paper
Keywords:
Dicer
Dbp5 is an essential DEAD-box protein that mediates nuclear mRNP export. Dbp5 also shuttles between nuclear and cytoplasmic compartments with reported roles in transcription, ribosomal subunit export, and translation; however, the mechanism(s) by which nucleocytoplasmic transport occurs and how Dbp5 specifically contributes to each of these processes remains unclear. Towards understanding the functions and transport of Dbp5 in Saccharomyces cerevisiae, alanine scanning mutagenesis was used to generate point mutants at all possible residues within a GFP-Dbp5 reporter. Characterization of the 456 viable mutants led to the identification of an N-terminal Xpo1-dependent nuclear export signal in Dbp5, in addition to other separation-of-function alleles, which together provide evidence that Dbp5 nuclear shuttling is not essential for mRNP export. Rather, disruptions in Dbp5 nucleocytoplasmic transport result in tRNA export defects, including changes in tRNA shuttling dynamics during recovery from nutrient stress.
Nuclear export signal
DEAD box
Cite
Citations (20)
Importin
Cite
Citations (0)
Cite
Citations (14)
Ran
Importin
Nuclear pore
Nucleoporin
Cite
Citations (0)
Nuclear export signal
Importin
MYB
Cite
Citations (27)
Nucleoporin
Nuclear export signal
Ran
Cite
Citations (6)
The yeast Cth2 protein is a CX8CX5CX3H tandem zinc finger protein that binds AU-rich element (ARE)-containing transcripts to enhance their decay in response to iron (Fe) deficiency. Mammalian members of this family of proteins are known to undergo nucleocytoplasmic shuttling, but little is known about the role of shuttling in the mechanism of ARE-dependent mRNA decay. Here we demonstrate that, like its mammalian homologues, Cth2 is a nucleocytoplasmic shuttling protein whose nuclear export depends on mRNA transport to the cytosol. The nuclear import information of Cth2 is contained within its tandem zinc finger domain, but it is independent of mRNA-binding function. Moreover, we also demonstrate that nucleocytoplasmic shuttling of Cth2 requires active transcription and that disruption of shuttling leads to defects in Cth2 function in mRNA decay under Fe deficiency. Taken together, our data suggest that under conditions of Fe deficiency Cth2 travels into the nucleus to recruit target mRNAs, perhaps cotranscriptionally, that are destined for cytosolic degradation as part of the mechanism of adaptation to growth under Fe limitation. These data also suggest an important role for nucleocytoplasmic shuttling in this conserved family of proteins in the mechanism of ARE-mediated mRNA decay.
Nuclear export signal
Transcription
Cite
Citations (37)
Double-stranded RNA (dsRNA)-binding proteins interact with substrate RNAs via dsRNA-binding domains (dsRBDs). Several proteins harboring these domains exhibit nucleocytoplasmic shuttling and possibly remain associated with their substrate RNAs bound in the nucleus during nuclear export. In the human RNA-editing enzyme ADAR1-c, the nuclear localization signal overlaps the third dsRBD, while the corresponding import factor is unknown. The protein also lacks a clear nuclear export signal but shuttles between the nucleus and the cytoplasm. Here we identify transportin-1 as the import receptor for ADAR1. Interestingly, dsRNA binding interferes with transportin-1 binding. At the same time, each of the dsRBDs in ADAR1 interacts with the export factor exportin-5. RNA binding stimulates this interaction but is not a prerequisite. Thus, our data demonstrate a role for some dsRBDs as RNA-sensitive nucleocytoplasmic transport signals. dsRBD3 in ADAR1 can mediate nuclear import, while interaction of all dsRBDs might control nuclear export. This finding may have implications for other proteins containing dsRBDs and suggests a selective nuclear export mechanism for substrates interacting with these proteins.
Nuclear export signal
RNA Silencing
Cite
Citations (120)
Cite
Citations (0)
In eukaryotes, active import of large signaling molecules and proteins over 40 kD in the nucleus is mediated by aptly named “importin” proteins. As there are considerably fewer importins than there are cargos, determining how cargo-transporter specificity is mediated constitutes a challenging
Importin
Karyopherin
Ran
Cite
Citations (0)