logo
    Adaptive sparsity tradeoff for ℓ<inf>1</inf>-constraint NLMS algorithm
    5
    Citation
    22
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Embedding the norm in gradient-based adaptive filtering is a popular solution for sparse plant estimation. Even though the foundations are well understood, the selection of the sparsity hyper-parameter still remains today matter of study. Supported on the modal analysis of the adaptive algorithm near steady state, this paper shows that the optimal sparsity tradeoff depends on filter length, plant sparsity and signal-to-noise ratio. In a practical implementation, these terms are obtained with an unsupervised mechanism tracking the filter weights. Simulation results prove the robustness and superiority of the novel adaptive-tradeoff sparsity-aware method.
    Keywords:
    Robustness
    The embedding problem for Markov chains is a famous problem in probability theory and only partial results are available up till now. In this paper, we propose a variant of the embedding problem called the reversible embedding problem which has a deep physical and biochemical background and provide a complete solution to this new problem. We prove that the reversible embedding of a stochastic matrix, if it exists, must be unique. Moreover, we obtain the sufficient and necessary conditions for the existence of the reversible embedding and provide an effective method to compute the reversible embedding. Some examples are also given to illustrate the main results of this paper.
    Matrix (chemical analysis)
    Citations (1)
    This is the sequel to our first paper concerning the balanced embedding of a non-compact complex manifold into an infinite-dimensional projective space. We prove the uniqueness of such an embedding. The proof relies on fine estimates of the asymptotics of a balanced embedding.
    Manifold (fluid mechanics)
    Citations (0)
    Abstract Embedding and visualizing large‐scale high‐dimensional data in a two‐dimensional space is an important problem, because such visualization can reveal deep insights of complex data. However, most of the existing embedding approaches run on an excessively high precision, even when users want to obtain a brief insight from a visualization of large‐scale datasets, ignoring the fact that in the end, the outputs are embedded onto a fixed‐range pixel‐based screen space. Motivated by this observation and directly considering the properties of screen space in an embedding algorithm, we propose Pixel‐Aligned Stochastic Neighbor Embedding (PixelSNE), a highly efficient screen resolution‐driven 2D embedding method which accelerates Barnes‐Hut tree‐based t‐distributed stochastic neighbor embedding (BH‐SNE), which is known to be a state‐of‐the‐art 2D embedding method. Our experimental results show a significantly faster running time for PixelSNE compared to BH‐SNE for various datasets while maintaining comparable embedding quality.
    Tree (set theory)
    Citations (2)
    We present a compositional embedding framework that infers not just a single class per input image, but a set of classes, in the setting of one-shot learning. Specifically, we propose and evaluate several novel models consisting of (1) an embedding function f trained jointly with a "composition" function g that computes set union operations between the classes encoded in two embedding vectors; and (2) embedding f trained jointly with a "query" function h that computes whether the classes encoded in one embedding subsume the classes encoded in another embedding. In contrast to prior work, these models must both perceive the classes associated with the input examples and encode the relationships between different class label sets, and they are trained using only weak one-shot supervision consisting of the label-set relationships among training examples. Experiments on the OmniGlot, Open Images, and COCO datasets show that the proposed compositional embedding models outperform existing embedding methods. Our compositional embedding models have applications to multi-label object recognition for both one-shot and supervised learning.
    Citations (1)
    Over the past two decades, spread spectrum (SS) embedding has been widely used in digital watermarking due to its competitive performance in robustness and security. However, the robustness of existing secure SS embedding methods, such as natural watermarking (NW) and robust-NW (RNW), is still weak. In this article, we propose a new secure SS embedding method named truncated-RNW (TRNW), which improves the robustness of RNW while maintaining the same security level. The main idea of TRNW is to move RNW-watermarked correlations within an origin-centered sphere onto the spherical surface along the radial direction. Moreover, Hungarian algorithm is used to reduce embedding distortion, and the optimized method is called Hungarian-TRNW (HTRNW). A theoretical analysis and extensive experiments are conducted to validate the effectiveness of the proposed method. The results show that HTRNW achieves the same security level as RNW and a significant improvement over existing representative secure SS embeddings in terms of robustness.
    Robustness
    Citations (10)
    The work deals with researching robustness of information system for measuring of microcontrollers average power consumption. Defined the ways of ensuring robustness of the proposed method. Considered hardware for robustness of the proposed method and proposed methods of study of the robustness of the proposed method.
    Robustness
    This paper presents a novel hexarotor unmanned aerial vehicle (UAV) with robustness against an arbitrary rotor-failure, called full robustness, and a design method to maximize its manipulability while ensuring the full robustness. First, the dynamical model of a hexarotor UAV and the novel structure with 2Y shape and twisted angles are presented. A hexarotor with this structure is named as 2Y hexarotor. The 2Y hexarotor has higher flight efficiency than other existing hexarotor structures with full robustness. Second, the full robustness of the 2Y hexarotor is proved, and a quantitative measure to evaluate the full robustness is introduced. Then, the quantitative measure for the full robustness is used to calculate the optimal twisted angles. Finally, the dynamic manipulability measure (DMM) is introduced to evaluate the maneuverability. A design method is defined as the maximization of the DMM under constraints regarding the quantitative measure for the full robustness and the condition to avoid overlapping rotors. The design method is applied to the 2Y hexarotor with the optimal twisted angles.
    Robustness
    Maximization