logo
    The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources
    4
    Citation
    8
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Groundwater is the source of drinking water for ~1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d‒1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer information system can serve as a pre- and postprocessing environment for groundwater-flow models for use in water-supply planning, development, and management. The system also can be expanded to include features that evaluate constraints to groundwater development, such as insufficient available drawdown, degraded groundwater quality, insufficient aquifer yields, and well-field interference. Ultimately, the aquifer information system is intended to function as an interactive Web-based utility that provides a broad array of information related to groundwater resources in Maryland’s coastal plain to a wide-ranging audience, including well drillers, consultants, academia, and the general public.
    Keywords:
    Surficial aquifer
    Coastal plain
    The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains aquifer system from March to June 2009. The groundwater levels were used to construct a map of the potentiometric surface of the High Plains aquifer system. In addition, depth to water and estimated saturated-thickness maps of the aquifer system were constructed using the potentiometric-surface map.
    Surficial aquifer
    Aquifer test
    Citations (0)
    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been observed in a few springs with long-term record. Chloride concentrations in water from the Upper Floridan aquifer in Seminole County range areally from 6.2 to 5,300 milligrams per liter. Chloride concentrations are lowest in the recharge areas of the Floridan aquifer system in the western part of Seminole County and near Geneva. The most highly mineralized water occurs adjacent to the Wekiva River in northwestern Seminole County, around the eastern part of Lake Jesup, and along the St. Johns River in eastern Seminole County. Analysis of limited long-term water-quality data indicates that the chloride concentrations in water for most wells in the Floridan aquifer system in Seminole County have not changed significantly in the 20-year period from 1976 to 1996, and probably not since the mid 1950's. Analysis of water samples collected from some Upper Floridan aquifer springs, however, indicates that the water has become more mineralized during recent years. Increases in specific conductance and concentrations of major cations and anions were observed at several of the springs within the study area where long-term water-quality data were available. Associated with these increases in the mineralization of spring water has been an increase in total nitrate-plus- nitrite as nitrogen concentration. A three-dimensional model was developed to simulate ground-water flow in the surficial and Floridan aquifer systems. The steady-state ground-water flow model was calibrated to water-level data that was averaged over a 1-year period from September 1996 through August 1997. The calibrated flow model generally produced simulated water levels in reasonably close agreement with measured water levels. As a result, the calibrated model was used to simulate the effects of expected increases in ground-water withdrawals on the water levels in the surficial aquifer system and on the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County. The ca
    Surficial aquifer
    Aquifer test
    Citations (15)
    INTRODUCTION The Dublin and Midville aquifer systems are part of the Cretaceous aquifer system that underlies most of Richmond County, Georgia (Gorday, 1985; Falls and others, 1997). The Cretaceous aquifer system is the second most productive aquifer in Georgia and is a major source of water in the region. About 220 million gallons per day (Mgal/d) of water was withdrawn from the Cretaceous aquifer system during 2000 in Georgia (Fanning, 2003). The Augusta-Richmond County Water System is the largest public water supplier in the county and withdrew 13 Mgal/d of ground water during 2000; withdrawals decreased from 2001 to 2005. The towns of Hephzibah and Blythe withdrew 0.4 and 0.03 Mgal/d, respectively. Industrial ground-water withdrawals are concentrated along the Savannah River and totaled 2.89 Mgal/d. To monitor seasonal and long-term water-level fluctuations and trends in the aquifers, the U.S. Geological Survey (USGS) - in cooperation with Augusta Utilities - maintains a countywide network of about 100 water-level monitoring wells in various aquifers, including a new continuous monitoring site (well 30AA33) and two existing USGS-Georgia Environmental Protection Division network sites (wells 29AA09 and 30AA04). Data compiled during this study were used to better define the hydrogeologic units and to construct an updated potentiometric-surface map for the area, which is used to better understand ground-water movement in the Cretaceous aquifer system. In addition, the potentiometric surface and related water-level data can be used for water-resource planning and to update ground-water flow models for the region (Clarke and West, 1997; Cherry, 2006).
    Surficial aquifer
    Geological survey
    Water well
    Aquifer properties
    Citations (2)
    The hydrogeology of Lake County and the Ocala National Forest in north-central Florida was evaluated (1995-2000), and a ground-water flow model was developed and calibrated to simulate the effects of both present day and future ground-water withdrawals in these areas and the surrounding vicinity. A predictive model simulation was performed to determine the effects of projected 2020 ground-water withdrawals on the water levels and flows in the surficial and Floridan aquifer systems. The principal water-bearing units in Lake County and the Ocala National Forest are the surficial and Floridan aquifer systems. The two aquifer systems generally are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Florida aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which generally are separated by one or two less-permeable confining units. The Floridan aquifer system is the major source of ground water in the study area. In 1998, ground-water withdrawals totaled about 115 million gallons per day in Lake County and 5.7 million gallons per day in the Ocala National Forest. Of the total ground water pumped in Lake County in 1998, nearly 50 percent was used for agricultural purposes, more than 40 percent for municipal, domestic, and recreation supplies, and less than 10 percent for commercial and industrial purposes. Fluctuations of lake stages, surficial and Floridan aquifer system water levels, and Upper Floridan aquifer springflows in the study area are highly related to cycles and distribution of rainfall. Long-term hydrographs for 9 lakes, 8 surficial aquifer system and Upper Floridan aquifer wells, and 23 Upper Floridan aquifer springs show the most significant increases in water levels and springflows following consecutive years with above-average rainfall, and significant decreases following consecutive years with below-average rainfall. Long-term (1940-2000) hydrographs of lake and ground-water levels and springflow show a slight downward trend; however, after the early 1960's, this downward trend generally is more pronounced, which corresponds with accumulating rainfall deficits and increased development. The U.S. Geological Survey three-dimensional ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the surficial and Floridan aquifer systems in Lake County, the Ocala National Forest, and adjacent areas. A steady-state calibration to average 1998 conditions was facilitated by using the inverse modeling capabilities of MODFLOW-2000. Values of hydrologic properties from the calibrated model were in reasonably close agreement with independently estimated values and results from previous modeling studies. The calibrated model generally produced simulated water levels and flows in reasonably close agreement with measured values and was used to simulate the hydrologic effects of projected 2020 conditions. Ground-water withdrawals in the model area have been projected to increase from 470 million gallons per day in 1998 to 704 million gallons per day in 2020. Significant drawdowns were simulated in Lake County from average 1998 to projected 2020 conditions: the average and maximum drawdowns, respectively, were 0.5 and 5.7 feet in the surficial aquifer system, 1.1 and 7.6 feet in the Upper Floridan aquifer, and 1.4 and 4.3 feet in the Lower Floridan aquifer. The largest drawdowns in Lake County were simulated in the southeastern corner of the County and in the vicinities of Clermont and Mount Dora. Closed-basin lakes and wetlands are more likely to be affected by future pumping in these large drawdown areas, as opposed to other areas of Lake County. However, within the Ocala National Forest, drawdowns were relatively small: the average and maximum drawdowns, respectively, were 0.1 and 1.0 feet in the surficial aquifer system, 0.2 and
    Surficial aquifer
    Citations (23)
    The hydrogeology of Hardee and De Soto Counties in west-central Florida was evaluated, and a ground-water flow model was developed to simulate the effects of expected increases in ground-water withdrawals for citrus irrigation on the potentiometric surfaces of the intermediate aquifer system and the Upper Floridan aquifer. In 1988, total citrus acreage in Hardee and De Soto Counties was 89,041 acres. By the year 2020, citrus acreage is projected to increase to 130,000 acres. Ground water is the major source of water supply in the study area, and 94 percent of the ground-water withdrawn in the area is used for irrigation purposes. The principal sources of ground water in the study area are the surficial aquifer, the intermediate aquifer system, and upper water-yielding units of the Floridan aquifer system, commonly referred to as the Upper Floridan aquifer. The surficial aquifer is a permeable hydrogeo1ogic unit contiguous with land surface that is comprised predominately of surficial quartz sand deposits that generally are less than 100 feet thick. The intermediate aquifer system is a somewhat less permeable hydrogeologic unit that lies between and retards the exchange of water between the overlying surficial aquifer and the underlying Upper Floridan aquifer. Thickness of the intermediate aquifer system ranges from about 200 to 500 feet and transmissivity ranges from 400 to 7,000 feet squared per day. The highly productive Upper Floridan aquifer consists of 1,200 to 1,400 feet of solution-riddled and fractured limestone and dolomite. Transmissivity values for this aquifer range from 71,000 to 850,000 feet squared per day. Wells open to the Upper Floridan aquifer. the major source of water in the area, can yield as much as 2,500 gallons of water per minute. The potential effects of projected increases in water withdrawals for citrus irrigation on groundwater heads were evaluated by the use of a quasi-three-dimensional, finite-difference, ground-water flow model. The model was calibrated under steady-state conditions to simulate September 1988 heads and under transient conditions to simulate head fluctuations between September 1988 and September 1989. The calibrated model was then used to simulate hydraulic heads for the years 2000 and 2020 that might result from projected increases in pumpage for citrus irrigation. The model simulation indicated that increased pumpage might be expected to result in: A maximum decline of more than 10 feet in theintermediate aquifer system at a proposed grove in eastern De Soto County and an average decline of more than 2 feet in much of the study area. An increase in downward leakage to the intermediate aquifer system from the overlying surficial aquifer system from 178 to 183 million gallons per day. A decrease in upward leakage from the intermediate aquifer system to the surficial aquifer from 1.58 to 1.47 million gallons per day. A maximum decline of about 5 feet in the Upper Floridan aquifer at a proposed grove in eastern De Soto County and a decline of more than 2 feet in much of the model area. An increase in downward leakage to the Upper Floridan aquifer from the intermediate aquifer system from 180 to 183 million gallons per day. A decrease in upward leakage from the Upper Floridan aquifer to the intermediate aquifer system from 4.32 million gallons per day in 1989 to 3.89 million gallons per day in the year 2,000. but an increase in upward leakage to 5.10 million gallons per day by the year 2020, reflecting a change in hydraulic gradient.
    Surficial aquifer
    Cone of depression
    Aquifer test
    Citations (5)
    In southwest Florida, principal hydrogeologic units include the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by a middle confining unit. The intermediate aquifer system includes all water-bearing units and confining units between the overlying surficial aquifer system and the underlying Floridan aquifer system. Thickness of the surficial aquifer system ranges from 25 to 250 ft and thickness of the intermediate aquifer system ranges from less than 100 to more than 800 ft. Transmissivity of the intermediate aquifer system ranges from less than 200 to about 12,000 sq ft/day. In the northern part of the study area, the potentiometric surface of the intermediate aquifer system is higher than the potentiometric surface of the underlying Upper Floridan aquifer. Water is transmitted downward through the confining unit and recharges the Upper Floridan aquifer. The gradient in head reverses in the southern part of the study area. In 1985, an estimated 808 million gal/day of freshwater was withdrawn from all aquifers in the study area for irrigation, public and rural supply, and industrial use. Of this total, an estimated 68.9 million gal/day was withdrawn from the intermediate aquifer system. (USGS)
    Surficial aquifer
    Cone of depression
    Aquifer test
    Citations (27)
    The Coastal Plain aquifers of New Jersey provide an important source of water for more than 2 million people. Steadily increasing withdrawals from the late 1800s to the early 1990s resulted in declining water levels and the formation of regional cones of depression. In addition to decreasing water supplies, declining water levels in the confined aquifers have led to reversals in natural hydraulic gradients that have, in some areas, induced the flow of saline water from surface-water bodies and adjacent aquifers to freshwater aquifers. In 1978, the U.S. Geological Survey began mapping the potentiometric surfaces of the major confined aquifers of New Jersey every 5 years in order to provide a regional assessment of ground-water conditions in multiple Coastal Plain aquifers concurrently. In 1988, mapping of selected potentiometric surfaces was extended into Delaware. During the fall of 2003, water levels measured in 967 wells in New Jersey, Pennsylvania, northeastern Delaware, and northwestern Maryland were used estimate the potentiometric surface of the principal confined aquifers in the Coastal Plain of New Jersey and five equivalent aquifers in Delaware. Potentiometric-surface maps and hydrogeologic sections were prepared for the confined Cohansey aquifer of Cape May County, the Rio Grande water-bearing zone, the Atlantic City 800-foot sand, the Vincentown aquifer, and the Englishtown aquifer system in New Jersey, as well as for the Piney Point aquifer, the Wenonah-Mount Laurel aquifer, and the Upper Potomac-Raritan-Magothy, the Middle and undifferentiated Potomac-Raritan-Magothy, and the Lower Potomac-Raritan-Magothy aquifers in New Jersey and their equivalents in Delaware. From 1998 to 2003, water levels in many Coastal Plain aquifers in New Jersey remained stable or had recovered, but in some areas, water levels continued to decline as a result of pumping. In the Cohansey aquifer in Cape May County, water levels near the center of the cone of depression underlying the southern part of the peninsula remained about the same as in 1998. To the south, recoveries up to 8 feet were observed in southern Lower Township as withdrawals had decreased since 1998. In the northern part of Cape May County, water levels had not changed substantially from historic conditions. In the Rio Grande water-bearing zone, water levels rose by as much as 13 ft at the Rio Grande well field; elsewhere across the aquifer, little change had occurred. In the Atlantic City 800-foot sand, water-level changes were greatest in southern Cape May County; at the Cape May desalination wells, water levels were as much as 32 ft lower in 2003 than in 1998. In contrast, water levels at the center of a regional cone of depression near Atlantic City rose by as much as 10 ft. Within the Piney Point aquifer water levels rose by 46 ft near Seaside Park. Similarly, water levels increased by more than 30 ft in and around the major cone of depression underlying Dover, Delaware. In the Vincentown aquifer, water levels stabilized or recovered by 2 ft to 6 ft from 1998 to 2003 in most of the wells measured; the exception is near Adelphia in Monmouth County, where water levels rose by as much as 18 ft. From 1998 to 2003, water levels near the center of a large cone of depression that extends from Monmouth to Ocean County recovered by as much as 20 ft in the Wenonah-Mount Laurel aquifer. Concurrently, ground-water levels within the Englishtown aquifer system declined by as much as 13 ft in the same area. Water levels across much of the Upper Potomac-Raritan-Magothy aquifer in the northern Coastal Plain remained about the same as 5 years previous, except in northern Ocean County where ground-water levels declined 10 ft to 33 ft. Water levels in the Middle Potomac-Raritan-Magothy aquifer declined from 5 to 9 ft along the border between Monmouth and Middlesex County. Elsewhere, across the northern part of the Coastal Plain, water levels stabilized within the Cretaceous-a
    Surficial aquifer
    Coastal plain
    Cone of depression
    Aquifer test
    Saltwater intrusion
    Citations (9)
    First posted February 12, 2021 For additional information, contact: Director, New Jersey Water Science CenterU.S. Geological Survey3450 Princeton PikeSuite 110Lawrenceville, NJ 08648Contact Pubs Warehouse The Coastal Plain aquifers of New Jersey provide an important source of water for more than 3.5 million people. In 2013, groundwater withdrawals from 10 confined aquifers of the New Jersey Coastal Plain totaled about 190 million gallons per day. Steadily increasing withdrawals from the late 1800s to the early 1990s resulted in declining water levels and the formation of regional cones of depression in many confined Coastal Plain aquifers. Starting in 1978, the U.S. Geological Survey (USGS) began mapping the potentiometric surfaces of the major confined Coastal Plain aquifers every 5 years to provide a regional assessment of groundwater conditions.In a study conducted by the USGS, in cooperation with the New Jersey Department of Environmental Protection, water levels in 10 confined aquifers of the New Jersey Coastal Plain were measured and evaluated to provide a regional overview of groundwater conditions during fall 2013. Water levels were measured in 987 wells in New Jersey, and parts of Pennsylvania and Delaware. Potentiometric-surface maps were prepared for, in ascending order of age, the confined Cohansey aquifer of Cape May County, Rio Grande water-bearing zone, Atlantic City 800-foot sand, Piney Point aquifer, Vincentown aquifer, Wenonah-Mount Laurel aquifer, Englishtown aquifer system, and the Upper, Middle, and Lower aquifers of the Potomac-Raritan-Magothy (PRM) aquifer system.Persistent, regionally extensive cones of depression were present in the potentiometric surfaces of the Englishtown aquifer system and Wenonah-Mount Laurel aquifer in Ocean and Monmouth Counties; Wenonah-Mount Laurel and Upper, Middle, and Lower PRM aquifers in Camden County; and Atlantic City 800-foot sand in Atlantic County. Changes in water levels from 2008 to 2013 were measured in many Coastal Plain aquifers in New Jersey. In some areas, water levels continued to decline as a result of pumping, but in other areas water levels continued to recover as a result of regulated decreases in groundwater withdrawals. Since 2008, in the confined Cohansey aquifer in Cape May County, water levels generally did not change; however, cones of depression in the potentiometric surface of the Piney Point aquifer in some areas of Cumberland County deepened by more than 20 feet (ft). In Critical Area 1, an area of restricted withdrawals, measured water levels in the Wenonah-Mount Laurel aquifer declined in parts of southern Monmouth County by more than 10 ft; however, rises in water levels of more than 10 ft were measured in parts of northern Ocean and Monmouth Counties. Since 2008, in Critical Area 2, also an area of restricted withdrawals, measured water levels in the Wenonah-Mount Laurel aquifer rose more than 20 ft in parts of western Burlington County and more than 20 ft in parts of western Camden County. Since 2008, in Critical Area 1, measured water levels in the Englishtown aquifer system declined in parts of eastern Ocean County by more than 10 ft and in southeastern Monmouth County by more than 20 ft; however, rises in water levels of more than 10 ft were measured in other parts of Ocean and Monmouth Counties.In general, since 2008 in Critical Area 2, in the Upper PRM aquifer, measured water levels continued to rise by 10 ft or more in central and western Burlington and central Camden Counties. In the Middle PRM aquifer in Critical Area 2, measured water levels rose in parts of central Camden County by 10 ft or more. However, measured water levels in the Lower PRM aquifer in Critical Area 2 were more than 10 ft lower in the center of the cone of depression in central Camden County, but measured water levels continued to rise updip from this area in Critical Area 2.Seasonal water-level fluctuations are presented in time-series hydrographs for 77 wells during 1978–2013. Analyses of long-term water-level changes for the period 2008–13 indicate downward water-level trends at 14 wells (18 percent), upward trends at 34 wells (44 percent), and no substantial change at 29 wells (38 percent). Downward trends were most often observed for wells screened in the Piney Point aquifer and the Atlantic City 800-foot sand. Upward water-level trends were most often measured for wells screened in the PRM aquifer system. Upward water-level trends also were measured for wells in the Englishtown aquifer system and the Wenonah-Mount Laurel aquifer in Critical Area 1 in some areas; however, downward trends and no substantial changes were measured in other areas.
    Surficial aquifer
    Coastal plain
    Cone of depression
    Geological survey
    Aquifer test
    Citations (4)
    First posted February 25, 2020 For additional information, contact: Director, Oklahoma-Texas Water Science CenterU.S. Geological Survey1505 Ferguson Lane Austin, TX 78754–4501 The U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Project assessed the quality of groundwater in aquifers that are important sources of drinking water in the United States. One major aquifer in Texas that was assessed by NAWQA in 2013 is the coastal lowlands aquifer system, which is often referred to in Texas as the “Gulf Coast aquifer system.” The coastal lowlands aquifer system supplies water for millions of people; self-supplied (private) well withdrawals in 2005 from this aquifer system were the sixth largest among all major aquifer systems in the Nation. A major aquifer in Texas that was assessed by NAWQA in 2015 is the Texas coastal uplands aquifer system; the Carrizo-Wilcox aquifer is one of several aquifers that compose this aquifer system in Texas. The rocks composing the Texas coastal uplands aquifer system extend east from Texas as part of the Mississippi embayment aquifer system and underlie areas of several States. The Texas coastal uplands aquifer system and Mississippi embayment aquifer system are often collectively referred to as the “Mississippi embayment-Texas coastal uplands aquifer system.” Self-supplied withdrawals from the Mississippi embayment-Texas coastal uplands aquifer system in 2005 were the eighth largest among all major aquifer systems in the Nation. The coastal lowlands aquifer system and Mississippi embayment-Texas coastal uplands aquifer system were assessed as part of the NAWQA Principal Aquifer Surveys (PAS), which were designed to evaluate constituent concentrations in water samples obtained from domestic and public-supply wells prior to any treatment. PAS assessments like these allow for the comparison of water-quality concentrations in untreated groundwater using preestablished benchmarks for the protection of human health and for aesthetic qualities such as taste, color, and odor. The use of preestablished benchmarks can provide a basis for comparison of groundwater quality among principal aquifers.
    Surficial aquifer
    Coastal plain
    Aquifer test
    Citations (0)