logo
    A PRELIMINARY STUDY TO DETERMINE THE ACTIVITY OF TOPOISOMERASE II IN HUMAN KIDNEY CANCER CELLS WITH DNA UNKNOTTING METHOD
    2
    Citation
    14
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    For the purpose of examining the Topoisomerase II (Topo II) activity in human kidney cancer cells, we performed experiments with using DNA unknotting method. This method check relative Topo II activity with its conversion of knotted form P4 phage DNA to unknotted form. Our preliminary results demonstrate remarkable activity of Topo II with specific conversion of knotted form P4 DNA to unknotted form in human kidney cancer cells, YCR and ACHN. Moreover, addition of etoposide to the same experiment suppressed Topo II activity in a dose dependent manner. Our results suggest that kidney cancer has a certain amount of Topo II, a target for etoposide. We believe this method is useful to measure Topo II activity in cancer cells and to estimate chemotherapeutic potential of Topo II inhibitors including etoposide in human kidney cancers.
    Keywords:
    Human kidney
    Kidney cancer
    Etoposide is a topoisomerase II poison that is utilized to treat a broad spectrum of human cancers. Despite its wide clinical use, 2-3% of patients treated with etoposide eventually develop treatment-related acute myeloid leukemias (t-AMLs) characterized by rearrangements of the MLL gene. The molecular basis underlying the development of these t-AMLs is not well understood; however, previous studies have implicated etoposide metabolites (i.e., etoposide quinone) and topoisomerase IIβ in the leukemogenic process. Although interactions between etoposide quinone and topoisomerase IIα have been characterized, the effects of the drug metabolite on the activity of human topoisomerase IIβ have not been reported. Thus, we examined the ability of etoposide quinone to poison human topoisomerase IIβ. The quinone induced ~4 times more enzyme-mediated DNA cleavage than did the parent drug. Furthermore, the potency of etoposide quinone was ~2 times greater against topoisomerase IIβ than it was against topoisomerase IIα, and the drug reacted ~2-4 times faster with the β isoform. Etoposide quinone induced a higher ratio of double- to single-stranded breaks than etoposide, and its activity was less dependent on ATP. Whereas etoposide acts as an interfacial topoisomerase II poison, etoposide quinone displayed all of the hallmarks of a covalent poison: the activity of the metabolite was abolished by reducing agents, and the compound inactivated topoisomerase IIβ when it was incubated with the enzyme prior to the addition of DNA. These results are consistent with the hypothesis that etoposide quinone contributes to etoposide-related leukemogenesis through an interaction with topoisomerase IIβ.
    Citations (43)
    Topoisomerase II regulates DNA topology by generating transient double-stranded breaks. The anticancer drug etoposide targets topoisomerase II and is associated with the formation of secondary leukemias in patients. The quinone and catechol metabolites of etoposide may contribute to strand breaks that trigger leukemic translocations. To further analyze the characteristics of etoposide metabolites, we extend our previous analysis of etoposide quinone to the catechol. We demonstrate that the catechol is ∼2–3-fold more potent than etoposide and under oxidative reaction conditions induces high levels of double-stranded DNA cleavage. These results support a role for etoposide catechol in contributing to therapy-induced DNA damage.
    Catechol
    Citations (21)
    TAS-103 is a novel antineoplastic agent that is active against in vivo tumor models [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992−1002]. This drug is believed to be a dual topoisomerase I/II-targeted agent, because it enhances both topoisomerase I- and topoisomerase II-mediated DNA cleavage in treated cells. However, the relative importance of these two enzymes for the cytotoxic actions of TAS-103 is not known. Therefore, the primary cellular target of the drug and its mode of action were determined. TAS-103 stimulated DNA cleavage mediated by mammalian topoisomerase I and human topoisomerase IIα and β in vitro. The drug was less active than camptothecin against the type I enzyme but was equipotent to etoposide against topoisomerase IIα. A yeast genetic system that allowed manipulation of topoisomerase activity and drug sensitivity was used to determine the contributions of topoisomerase I and II to drug cytotoxicity. Results indicate that topoisomerase II is the primary cellular target of TAS-103. In addition, TAS-103 binds to human topoisomerase IIα in the absence of DNA, suggesting that enzyme-drug interactions play a role in formation of the ternary topoisomerase II·drug·DNA complex. TAS-103 induced topoisomerase II-mediated DNA cleavage at sites similar to those observed in the presence of etoposide. Like etoposide, it enhanced cleavage primarily by inhibiting the religation reaction of the enzyme. Based on these findings, it is suggested that TAS-103 be classified as a topoisomerase II-targeted drug.
    Camptothecin
    Topoisomerase inhibitor
    Cleavage (geology)
    Citations (63)
    Camptothecins are a new class of anticancer drugs that target DNA topoisomerase I; current efforts are directed toward elucidating optimal combinations of these drugs with other antineoplastic agents. A rationale for the use of sequential therapy involving the combination of camptothecins with topoisomerase II-targeting drugs, such as etoposide, has arisen from observations of increased topoisomerase II protein levels in cell lines resistant to camptothecin. In an effort to understand potential mechanisms of resistance to this strategy, we developed a U-937 cell subline, denoted RERC, that is capable of surviving exposure to sequential topoisomerase poisoning. The RERC cells are 200-fold resistant to camptothecin, 8-fold resistant to etoposide, and 10-fold hypersensitive to cisplatin compared to the parental U-937 cells. Biochemical analyses indicate that the resistant phenotype involves alterations in both topoisomerase I and topoisomerase IIalpha. Topoisomerase I catalytic activity in the resistant cells is similar to that of the parental line but is resistant to camptothecin. Moreover, the resistant cells express a single mRNA species of topoisomerase I that codes for a mutation in codon 533. In addition, topoisomerase IIalpha protein levels are decreased 10-fold in the resistant line, coincident with a two-fold decrease in the expression of topoisomerase IIalpha mRNA. Collectively, these results indicate that resistance to sequential topoisomerase poisoning may involve a reduction in total cellular topoisomerase activity.
    Camptothecin
    Topoisomerase inhibitor
    Citations (43)
    Etoposide is an important chemotherapeutic agent that is used to treat a wide spectrum of human cancers. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and overwinding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Given the central role of topoisomerase II in both the cure and initiation of human cancers, it is imperative to further understand the mechanism by which the enzyme cleaves and rejoins the double helix and the process by which etoposide and other anticancer drugs alter topoisomerase II function.
    Topoisomerase inhibitor
    Citations (496)
    Abstract Etoposide is a broadly employed chemotherapeutic and eukaryotic topoisomerase II poison that stabilizes cleaved DNA intermediates to promote DNA breakage and cytotoxicity. How etoposide perturbs topoisomerase dynamics is not known. Here we investigated the action of etoposide on yeast topoisomerase II, human topoisomerase IIα and human topoisomerase IIβ using several sensitive single-molecule detection methods. Unexpectedly, we found that etoposide induces topoisomerase to trap DNA loops, compacting DNA and restructuring DNA topology. Loop trapping occurs after ATP hydrolysis but before strand ejection from the enzyme. Although etoposide decreases the innate stability of topoisomerase dimers, it increases the ability of the enzyme to act as a stable roadblock. Interestingly, the three topoisomerases show similar etoposide-mediated resistance to dimer separation and sliding along DNA but different abilities to compact DNA and chirally relax DNA supercoils. These data provide unique mechanistic insights into the functional consequences of etoposide on topoisomerase II dynamics.
    Citations (32)