Cyclic AMP responsive element-binding protein promotes renal cell carcinoma proliferation probably via the expression of spindle and kinetochore-associated protein 2
Haihui ZhuangXiangyu MengYanyuan LiXue WangShuaishuai HuangKaitai LiuM. HehirRong FangLei JiangJeff X. ZhouPing WangYu Ren
23
Citation
41
Reference
10
Related Paper
Citation Trend
Abstract:
Emerging evidence shows that the aberrantly expressed cyclic AMP responsive element-binding protein (CREB) is associated with tumor development and progression in several cancers. Spindle and kinetochore-associated protein 2 (SKA2) is essential for regulating the progress of mitosis. In this study, we evaluate in vitro and in vivo the functional relationship between CREB and SKA2 in renal cell carcinoma (RCC). Suppressing and replenishing CREB levels were used to manipulate SKA2 expression, observing the effects on RCC cell lines. Computational prediction and ChIP assay identified that CREB targeted ska2 by binding its CRE sequence in the human genome. Overexpression of CREB reversed the inhibited cell growth following siSKA2 treatment, and reduced the number of cells holding in mitosis. Decreased expression of CREB suppressed RCC cell growth and xenograft tumor formation, accompanied by reduced expression of SKA2. In RCC tumor samples from patients, mRNA for SKA2 were plotted near those of CREB in each sample, with significantly increased immunohistochemical staining of higher SKA2 and CREB in the higher TNM stages. The study adds evidence that CREB, a tumor oncogene, promotes RCC proliferation. It probably achieves this by increasing SKA2 expression.Keywords:
Nephrology
CREB1
Cite
Citations (0)
Neuropeptide Y (NPY) has a potent inhibitory effect on TRH gene expression in the paraventricular nucleus (PVN) and contributes to the fall in circulating thyroid hormone levels during fasting mediated by a reduction in serum leptin levels. Because alpha-MSH activates the TRH gene by increasing the phosphorylation of CREB in the nucleus of these neurons, we raised the possibility that at least one of the mechanisms by which NPY reduces TRH mRNA in hypophysiotropic neurons is by antagonizing the ability of alpha-MSH to phosphorylate CREB. As NPY increases CRH mRNA in the hypothalamus, we further determined whether intracerebroventricular (i.c.v.) administration of NPY regulates the phosphorylation of CREB in hypophysiotropic CRH neurons. NPY [10 micro g in artificial CSF (aCSF)] was administered into the lateral ventricle i.c.v. 30 min before the i.c.v. administration of aCSF or alpha-MSH (10 micro g in aCSF), the latter in a dose previously demonstrated to increase proTRH mRNA and phosphorylate CREB in TRH neurons. By double-labeling immunocytochemistry, only few TRH neurons in the PVN contained phosphoCREB (PCREB) in animals treated only with aCSF (4 +/- 0.2%) or with NPY followed by aCSF (9.7 +/- 2.5), whereas alpha-MSH-infused animals dramatically increased the percentage of TRH neurons containing PCREB (75.3 +/- 6.9%). Pretreatment with NPY before alpha-MSH infusion, however, significantly reduced the percentage of TRH neurons containing PCREB (40.8 +/- 3.5%) compared with alpha-MSH infused animals (P = 0.01). Only 12.2 +/- 0.9% of CRH neurons of the medial parvocellular neurons contained PCREB nuclei in vehicle-treated animals, whereas 30 min following NPY infusion, the number of CRH neurons containing PCREB increased dramatically to 88 +/- 2.9%. Whereas alpha-MSH infusion increased the percentage of CRH neurons that contained PCREB to 56 +/- 2.2% compared with control, animals pretreated with NPY further increased the number of CRH neurons colocalizing with PCREB to 87 +/- 2.5%. These data demonstrate a functional interaction between NPY and alpha-MSH in the regulation of proTRH neurons in the PVN, suggesting that NPY can antagonize alpha-MSH induced activation of the TRH gene by interfering with melanocortin signaling at the postreceptor level, preventing the phosphorylation of CREB. In contrast, NPY infusion increases the phosphorylation of CREB in CRH neurons, indicating that NPY has independent effects on discrete populations of neurons in the PVN, presumably mediated through different signaling mechanisms.
Melanocyte-stimulating hormone
Cyclic adenosine monophosphate
Cite
Citations (65)
Cite
Citations (39)
Glioma is a type of tumor that occurs in the brain and accounts for almost 30 % of all brain and central nervous system tumors and 80 % of all malignant brain tumors. In this study, we investigate the role of cAMP response element-binding protein (CREB) in the progression of glioma.Tissue samples from glioma patients were collected and examined for expression of CREB and its correlation with tumor grades. CREB was then knocked down via siRNA to see if reduced expression of CREB affects cell proliferation and migration. Factors involved in cell cycles, adhesion and apoptosis were examined as well. Moreover, CRESP/CAS9 mediated knockout of CREB was conducted and athymic Nude mice model was used to investigate CREB's role in vivo.The evaluated expression level of CREB in glioma patients was correlated with tumor grades. Knockdown of CREB via siRNA in glioma cell line U251 significantly inhibited the proliferation and migration of tumor cells. Moreover, CyclinD1 and Bcl-2 expression were reduced, as well as phosphorylation of IRK1/2 and AKT. Additionally, knockout of CREB via CRESP/CAS9 inhibited tumor formation of U251 cells in athymic Nude mice model.In conclusion, our data suggest that over expression of CREB may contribute to progression of glioma and knockdown of CREB expression may serve as a novel target for therapy (Tab. 1, Fig. 6, Ref. 25).
Knockout mouse
Tumor progression
Cite
Citations (11)
Cite
Citations (13)
AbstractCyclic-AMP response element binding protein (CREB) is a transcription factor that functions in glucose homeostasis, growth-factor- dependent cell survival, proliferation and memory. Signaling by hematopoietic growth factors, such as GM-CSF, results in activation of CREB and upregulation of CREB target genes. Data from our laboratory shows that a majority of patients with acute lymphoid and myeloid leukemiaoverexpress CREB in the bone marrow. CREB overexpression is associated with poor initial outcome of clinical disease in AML patients. To study its role in hematopoiesis, we overexpressed CREB in leukemia cell lines and in mice. CREB overexpression resulted in increased survival and proliferation of myeloid cells and blast-transformation of bone marrow progenitor cells from transgenic mice expressing CREB in the myeloid lineage. CREB transgenic mice also develop myeloproliferative disease after one year. Thus, CREB acts as a proto-oncogene to regulate hematopoiesis and contributes to the leukemia phenotype. Our results suggest that CREB-dependent pathways may serve as targets for directed therapies in leukemia in the future.
Cite
Citations (58)
Small cell lung cancer (SCLC) is the most deadly subtype of lung cancer due to its dismal prognosis. We have developed a lentiviral vector-mediated SCLC mouse model and have explored the role of both the NF-κB and CREB families of transcription factors in this model. Surprisingly, induction of NF-κB activity, which promotes tumor progression in many cancer types including non-small cell lung carcinoma (NSCLC), is dispensable in SCLC. Instead, suppression of NF-κB activity in SCLC tumors moderately accelerated tumor development. Examination of gene expression signatures of both mouse and human SCLC tumors revealed overall low NF-κB but high CREB activity. Blocking CREB activation by a dominant-negative form of PKA (dnPKA) completely abolished the development of SCLC. Similarly, expression of dnPKA or treatment with PKA inhibitor H89 greatly reduced the growth of SCLC tumors in syngeneic transplantation models. Altogether, our results strongly suggest that targeting CREB is a promising therapeutic strategy against SCLC.Implications: Activity of the transcription factor CREB is elevated in SCLC tumors, which helps to maintain its neuroendocrine signature and cell proliferation. Our results highlight the importance of targeting the CREB pathway to develop new therapeutics to combat SCLC. Mol Cancer Res; 16(5); 825-32. ©2018 AACR.
Cite
Citations (46)
Objective To assess the curative efficacy of retroperitoneal laparoscopic radical nephrectomy(RLRN) in patients with renal cell carcinoma.Methods The clinical data of 28 patients with renal cell carcinoma who underwent RLRN were retrospectively analyzed.Results All patients received RLRN successfully.The mean surgical time was 116 minutes(range 96 to 175 minutes),mean blood lose was 96 mL(range 70 to 500 mL),and mean postoperative hospital stay was 8.5 days(range 7 to 10 days).Among the 28 patients wound infection in 1 cases,3 had pleural rupture,and 1 had delayed healing of port sites.No tumor recurrence and implantation metastasis at the puncture site was observed during 3 to 24 months of follow-up.Conclusion RLRN is effective,mini-invasive and safe for renal cell carcinoma.
Port (circuit theory)
Cite
Citations (0)
Nephrology
Distant metastasis
Cite
Citations (4)
Modalities
Cite
Citations (0)