logo
    Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency
    31
    Citation
    62
    Reference
    10
    Related Paper
    Citation Trend
    The aim of this study is to evaluate the anticancer activity of vorinostat-incorporated nanoparticles (vorinostat-NPs) against HuCC-T1 human cholangiocarcinoma cells. Vorinostat-NPs were fabricated by a nanoprecipitation method using poly(dl-lactide-co-glycolide)/poly(ethylene glycol) copolymer. Vorinostat-NPs exhibited spherical shapes with sizes <100 nm. Vorinostat-NPs have anticancer activity similar to that of vorinostat in vitro. Vorinostat-NPs as well as vorinostat itself increased acetylation of histone-H3. Furthermore, vorinostat-NPs have similar effectiveness in the suppression or expression of histone deacetylase, mutant type p53, p21, and PARP/cleaved caspase-3. However, vorinostat-NPs showed improved antitumor activity against HuCC-T1 cancer cell-bearing mice compared to vorinostat, whereas empty nanoparticles had no effect on tumor growth. Furthermore, vorinostat-NPs increased the expression of acetylated histone H3 in tumor tissue and suppressed histone deacetylase (HDAC) expression in vivo. The improved antitumor activity of vorinostat-NPs can be explained by molecular imaging studies using near-infrared (NIR) dye-incorporated nanoparticles, i.e. NIR-dye-incorporated nanoparticles were intensively accumulated in the tumor region rather than normal one. Our results demonstrate that vorinostat and vorinostat-NPs exert anticancer activity against HuCC-T1 cholangiocarcinoma cells by specific inhibition of HDAC expression. Thus, we suggest that vorinostat-NPs are a promising candidate for anticancer chemotherapy in cholangiocarcinoma.
    Vorinostat
    Histone deacetylase inhibitor
    Citations (43)
    Aging is a complex process regulated by multiple cellular pathways, including the proteostasis network. The proteostasis network consists of molecular chaperones, stress-response transcription factors, and protein degradation machines that sense and respond to proteotoxic stress and protein misfolding to ensure cell viability. A loss of proteostasis is associated with aging and age-related disorders in diverse model systems, moreover, genetic or pharmacological enhancement of the proteostasis network has been shown to extend lifespan and suppress age-related disease. However, our understanding of the relationship between aging, proteostasis, and the proteostasis network remains unclear. Here, we propose, from studies in Caenorhabditis elegans, that proteostasis collapse is not gradual but rather a sudden and early life event that triggers proteome mismanagement, thereby affecting a multitude of downstream processes. Furthermore, we propose that this phenomenon is not stochastic but is instead a programmed re-modeling of the proteostasis network that may be conserved in other species. As such, we postulate that changes in the proteostasis network may be one of the earliest events dictating healthy aging in metazoans.
    Proteostasis
    Proteome
    Robustness
    Citations (90)
    Many diseases appear to be caused by the misregulation of protein maintenance. Such diseases of protein homeostasis, or "proteostasis," include loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer's, Parkinson's, and Huntington's disease). Proteostasis is maintained by the proteostasis network, which comprises pathways that control protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. The decreased ability of the proteostasis network to cope with inherited misfolding-prone proteins, aging, and/or metabolic/environmental stress appears to trigger or exacerbate proteostasis diseases. Herein, we review recent evidence supporting the principle that proteostasis is influenced both by an adjustable proteostasis network capacity and protein folding energetics, which together determine the balance between folding efficiency, misfolding, protein degradation, and aggregation. We review how small molecules can enhance proteostasis by binding to and stabilizing specific proteins (pharmacologic chaperones) or by increasing the proteostasis network capacity (proteostasis regulators). We propose that such therapeutic strategies, including combination therapies, represent a new approach for treating a range of diverse human maladies.
    Proteostasis
    Loss function
    The maintenance of the proteome is essential to preserve cell functionality and the ability to respond and adapt to the changing environment. This is regulated by the proteostasis network, a dedicated set of molecular components comprised of molecular chaperones and protein clearance mechanisms, regulated by cell stress signaling pathways, that prevents the toxicity associated with protein misfolding and accumulation of toxic aggregates in different subcellular compartments and tissues. The efficiency of the proteostasis network declines with age and this failure in protein homeostasis has been proposed to underlie the basis of common age-related human disorders. The current advances in the understanding of the mechanisms and regulation of proteostasis and of the different types of digressions in this process in aging have turned the attention toward the therapeutic opportunities offered by the restoration of proteostasis in age-associated degenerative diseases. Here, we discuss some of the unresolved questions on proteostasis that need to be addressed to enhance healthspan and to diminish the pathology associated with persistent protein damage.
    Proteostasis
    Proteome
    Citations (253)
    Cellular functionality relies on a well-balanced, but highly dynamic proteome. Dysfunction of mitochondrial protein import leads to the cytosolic accumulation of mitochondrial precursor proteins which compromise cellular proteostasis and trigger a mitoprotein-induced stress response. To dissect the effects of mitochondrial dysfunction on the cellular proteome as a whole, we developed pre-post thermal proteome profiling. This multiplexed time-resolved proteome-wide thermal stability profiling approach with isobaric peptide tags in combination with a pulsed SILAC labelling elucidated dynamic proteostasis changes in several dimensions: In addition to adaptations in protein abundance, we observed rapid modulations of the thermal stability of individual cellular proteins. Different functional groups of proteins showed characteristic response patterns and reacted with group-specific kinetics, allowing the identification of functional modules that are relevant for mitoprotein-induced stress. Thus, our new pre-post thermal proteome profiling approach uncovered a complex response network that orchestrates proteome homeostasis in eukaryotic cells by time-controlled adaptations of the abundance and the conformation of proteins.
    Proteostasis
    Proteome
    Isobaric labeling
    Chaperone (clinical)
    Tandem mass tag
    Citations (10)
    Aging is a complex process regulated by multiple cellular pathways, including the proteostasis network. The proteostasis network consists of molecular chaperones, stress-response transcription factors, and protein degradation machines that sense and respond to proteotoxic stress and protein misfolding to ensure cell viability. A loss of proteostasis is associated with aging and age-related disorders in diverse model systems, moreover, genetic or pharmacological enhancement of the proteostasis network has been shown to extend lifespan and suppress age-related disease. However, our understanding of the relationship between aging, proteostasis, and the proteostasis network remains unclear. Here, we propose, from studies in Caenorhabditis elegans, that proteostasis collapse is not gradual but rather a sudden and early life event that triggers proteome mismanagement, thereby affecting a multitude of downstream processes. Furthermore, we propose that this phenomenon is not stochastic but is instead a programmed re-modeling of the proteostasis network that may be conserved in other species. As such, we postulate that changes in the proteostasis network may be one of the earliest events dictating healthy aging in metazoans.
    Proteostasis
    Proteome
    Robustness
    Citations (109)
    Proper regulation of protein homeostasis (proteostasis) is essential to maintain cellular fitness. Proteome stress causes imbalance of the proteostasis, leading to various diseases represented by neurodegenerative diseases, cancers, and metabolic disorders. The biosensor community recently embarked on the development of proteome stress sensors to report on the integrity of proteostasis in live cells. While most of these sensors are based on metastable mutants of specific client proteins, a recent sensor takes advantage of the specific association of heat shock protein 27 with protein aggregates and exhibits a diffusive to punctate fluorescent change in cells that are subjected to stress conditions. Thus, heat shock proteins can be also used as a family of sensors to monitor proteome stress.
    Proteostasis
    Proteome
    HSF1
    Citations (7)
    Proteostasis is a cellular housekeeping process that refers to the healthy maintenance of the cellular proteome that governs the fate of proteins from synthesis to degradation. Perturbations of proteostasis might result in protein dysfunction with consequent deleterious effects that can culminate in cell death. To deal with the loss of proteostasis, cells are supplied with a highly sophisticated and interconnected network that integrates as major players the molecular chaperones and the protein degradation pathways. It is well recognized that the ability of cells to maintain proteostasis declines during ageing, although the precise mechanisms are still elusive. Indeed, genetic or pharmacological enhancement of the proteostasis network has been shown to extend lifespan in a variety of ageing models. Therefore, an improved understanding of the interventions/mechanisms that contribute to cellular protein quality control will have a huge impact on the ageing field. This mini-review centers on the current knowledge about the major pathways that contribute for the maintenance of Saccharomyces cerevisiae proteostasis, with particular emphasis on the developments that highlight the multidimensional nature of the proteostasis network in the maintenance of proteostasis, as well as the age-dependent changes on this network.
    Proteostasis
    Proteome
    Robustness
    Citations (19)
    Healthy cells utilize a series of protein quality regulatory networks to maintain the integrity and functionality of their proteome, named as protein homeostasis (proteostasis). However, the phenomenon of proteostasis collapse, including the destruction of the balance between protein synthesis, folding and degradation, are common with aging. The main causes of age-associated proteostasis collapse are as follows: (1) the decline in transcriptional activation of stress response related pathways, (2) the reduction of proteasome and autophagy activity, and (3) ribosome pausing during translation. In addition, proteostasis is regulated mainly through chaperones, proteasomes, and autophagy systems of proteostasis network in aging. This paper mainly reviews the causes of age-associated proteostasis collapse and the pathways of proteostasis regulation, which may open the way to explore aging studies and solve aging problems.健康细胞利用一系列蛋白质质量调控网络来维持自身蛋白质组的稳定性和功能性,即维持蛋白稳态。但是在衰老过程中普遍出现蛋白稳态失衡的现象,其主要表现是蛋白质合成、折叠和降解之间的平衡被破坏。造成衰老相关蛋白稳态失衡的原因主要有:(1)应激反应相关途径的转录受到抑制;(2)蛋白酶体活性降低和自噬功能出现障碍;(3)核糖体翻译暂停。另外,在衰老过程中细胞主要通过蛋白稳态网络的分子伴侣、蛋白酶体、自噬系统等对蛋白稳态进行调节。本文对衰老过程中造成蛋白稳态失衡的诱因以及蛋白稳态调控的途径进行综述,以期为衰老研究和解决老年健康问题开拓新思路。.
    Proteostasis
    Proteome
    Citations (1)
    The protein homeostasis (proteostasis) network is a nexus of molecular mechanisms that act in concert to maintain the integrity of the proteome and ensure proper cellular and organismal functionality. Early in life the proteostasis network efficiently preserves the functionality of the proteome, however, as the organism ages, or due to mutations or environmental insults, subsets of inherently unstable proteins misfold and form insoluble aggregates that accrue within the cell. These aberrant protein aggregates jeopardize cellular viability and, in some cases, underlie the development of devastating illnesses. Hence, the accumulation of protein aggregates activates different nodes of the proteostasis network that refold aberrantly folded polypeptides, or direct them for degradation. The proteostasis network apparently functions within the cell, however, a myriad of studies indicate that this nexus of mechanisms is regulated at the organismal level by signaling pathways. It was also discovered that the proteostasis network differentially responds to dissimilar proteotoxic insults by tailoring its response according to the specific challenge that cells encounter. In this mini-review, we delineate the proteostasis-regulating neuronal mechanisms, describe the indications that the proteostasis network differentially responds to distinct proteotoxic challenges, and highlight possible future clinical prospects of these insights.
    Proteostasis
    Proteome