Identification, presentation and interpretation of event years and pointer years in dendrochronology.
552
Citation
0
Reference
20
Related Paper
Citation Trend
Keywords:
Presentation (obstetrics)
Identification
Cite
Tree (set theory)
Cite
Citations (4,721)
I Origin of the materials.- II Analysis of the materials.- III Tree-ring growth and the site.- IV Applied dendrochronology.- V History of dendrochronology.- General Index.
Tree (set theory)
Cite
Citations (868)
A crossdating program for tree -ring research has been written to compare ring patterns of individual trees and composites. The program written in FORTRAN calculates the t value for correlation at every point of overlap of the two chronologies. The program is small enough to be used on a routine basis with a large number of trees. As the chronologies must be free from errors, the program is more suited to the study of oaks than coniferous trees.
Fortran
Tree (set theory)
Value (mathematics)
Cite
Citations (704)
Cite
Citations (1,565)
Cite
Citations (128)
Cite
Citations (451)
Normalization
Resilience
R package
Cite
Citations (176)
Tree (set theory)
Cite
Citations (726)
A rock glacier-year, with little evidence of long-term surges. Different parts of the slope like boulder deposit on the Table Cliffs Plateau, Utah, has moved slowly over a long period of time and has affected over 220 trees growing on it. Analyses of annual rings of trees affected by this and other slope movements show events such as inclination, shear, corrasion, burial, exposure, inundation, and nudation. Datable responses to these events are reaction-wood growth, growth suppression and release, ring termination and new callous growth, sprouting, succession, and miscellaneous structural and morphological changes. Various events may produce delayed, antagonistic, interfering, or irrelevant event responses, necessitating procedural caution. A modified skeleton plot of yearly event responses was constructed for each sample in this study with only strongly replicating dates from within trees considered valid. The resulting event-response curve shows peak periods of movement centered around the years 1781, 1803, 1827, 1849, 1869, 1885, 1890, 1907, 1910, 1923, 1938, 1942, 1944, and 1958. Spectral analysis of the event-response curve, mean annual precipitation, and an independently derived tree-ring precipitation surrogate suggests a possible relation between precipitation and slope movement. Analyses of temperature data did not produce results in spite of the presence of internal ice which might be expected to contribute to movement. Map plots of movement through time show event responses scattered in linear zones throughout the slope during main episodes of movement in any given move at different times and some parts move more than others.
Mass movement
Table (database)
Cite
Citations (375)
A new approach to removing the non -climatic variance of forest interior tree -ring width series, using the smoothing spline, is described. This method is superior to orthogonal polynomials because it makes no assumptions about the shape of the curve to be used for standardization. Also, because the curve can range continuously from a linear least squares fit to cubic interpolation through the data, it is far more flexible than polynomials and provides a more natural fit. For computing the spline, we found that specifying the Lagrange multiplier p which appears in the calculus of variation solution rather than the residual variance as suggested by Reinsche was both practical and more efficient. In effect, the smoothing is a one -parameter family of low -pass filters defined by p. We describe the general characteristics of these filters in the time and frequency domains and compute the response functions for several of them. The smoothing is an excellent tree -ring standardization method because its filtering characteristics are well defined. Its utility for dendroclimatology should be considerable since, outside of semiarid environments, sites similar to forest interiors predominate. Es wird ein neuer Ansatz zur Beseitigung der nicht -klimatisch bedingten Varianz aus den Jahrringfolgen von Baumen aus dem Bestandesinneren mit Hilfe von Ausgleichs -Splines beschrieben. Dieses Verfahren ist der Berechnung von orthogonalen Polynomen uberlegen, da es keine Annahmen uber die zur Standardisierung benotigte Kurvenform macht. Da die Spline -Kurve kontinuierlich von einem linearen Ausgleich auf der Grundlage der kleinsten Abweichungsquadrate bis zu einer kubischen Interpolation reichen kann, ist sie weitaus flexibler als Polynome und fuhrt zu einer naturlichen Anpassung. Wir haben herausgefunden, das die Vorgabe des LagrangeMultiplikators p, der bei der Losung der Variation vorkommt, zur Berechnung des Spline praktikabler und wirksamer ist als die Vorgabe der Restvarianz, wie Reinsche vorschlagt. In der Tat ist der Ausgleichsspline eine Familie von Einparameter -Tiefpassfiltern, die durch p definiert werden. Wir beschreiben die allgemeinen Eigenschaften dieser Filter im Zeit und Frequenzbereich und berechnen fur einige von ihnen die ResponseFunktionen. Der Ausgleichsspline ist ein sehr gutes Verfahren zur Standardisierung von Jahrringen, da seine Filtereigenschaften gut definiert sind. Seine Einsatzmoglichkeit in der Dendroklimatologie durfte betrachtlich sein, da auserhalb der semiariden Standorte solche dominieren, die dem Bestandesinneren ahnlich sind. Une nouvelle approche destinee a oter la variance non climatique contenue dans les series dendrochronologiques provenant de l'interieur de zones forestieres par l'utilisation de fonctions spline est decrite. Cette methode est superieure a celle basee sur les fonctions polynomials orthogonales parce qu'elle ne fait aucune hypothese concernant la forme de la courbe qui doit etre utilisee pour la standardisation. De plus, la courbe d'approximation engendree par une fonction peut varier continuellement depuis un lissage lineaire calcule par les moindres carres jusqu'a une interpolation cubique au travers des donnees. De ce fait, cette equation est bien plus souple que les polynomiales et procure des approximations plus naturelles . Pour calculer la fonction spline, nous avons trouve que specifier le multiplicateur p de LAGRANGE plutot que la variance residuelle comme le propose REINSCHE est a la fois pratique et plus efficace. En effet, le de lissage est une famille a un parametre de filtres passe -bas defini par p. Nous decrivons les caracteres generaux de
Smoothing
Spline (mechanical)
Interpolation
Cite
Citations (1,264)