THE IN VIVO RESPONSE OF KNEE ARTICULAR CARTILAGE TO RUNNING AND BICYCLING
0
Citation
0
Reference
20
Related Paper
Cite
Knee cartilage
Cite
Citations (44)
Knee cartilage
Cite
Citations (0)
The aim of this paper is to describe the new methods for analyzing knee articular cartilage degeneration. The most important aspects regarding research about magnetic resonance imaging, knee joint anatomy, stages of knee osteoarthritis, medical image segmentation and relaxation times calculation. This paper proposes new methods for relaxation times calculation and medical image segmentation. The experimental part describes the most important aspect regarding analysing of articular cartilage relaxation times changing. This part contains experimental results, which show the codependence between relaxation times and organic structure. These experimental results and proposed methods can be helpful for early osteoarthritis diagnostics.
T2 relaxation
Degeneration (medical)
Cite
Citations (3)
To explore the different influences of walking, running and stair activity on knee articular cartilage with T1 rho and T2 mapping sequences.MRI (3.0-T) scans of the right knee were performed in twenty-three young healthy adults immediately after 30 minutes of rest, walking, running and stair activity respectively. Articular cartilage was quantitatively assessed based on T1 rho and T2 relaxation times. Analysis of variance for random block design data, bonferroni test and paired samples t tests were performed to estimate the different influences of physiological activities on articular cartilage.T1 rho and T2 values had reductions after physiological activities in all regions of articular cartilage. T1 rho and T2 values were decreased more after running than walking. T1 rho and T2 values were decreased more after stair activity than running, except for femoral cartilage. The superficial layer of patella cartilage had higher reduction rates than the deep layer. The T1 rho and T2 values of articular cartilage were reduced in the following order: patellofemoral cartilage> medial tibiofemoral cartilage> lateral tibiofemoral cartilage. Patellofemoral cartilage experienced reductions in the following order: lateral part> middle part> medial part. Tibiofemoral cartilage had reductions in the following order: posterior part> middle part> anterior part.T1 rho and T2 mapping sequences can quantitatively reflect the different influences of physiological activities on knee articular cartilage. Fluid shifts, collagen fiber deformation, spatial heterogeneity, inherent differences in material properties and tissue stiffness have close relationship with cartilage loading characteristics.
Knee cartilage
Cite
Citations (41)
Medial meniscus
Cite
Citations (0)
Inverse dynamics
Cite
Citations (20)
Knee cartilage
Cite
Citations (0)
There are currently limited human in vivo data characterizing the role of the meniscus in load distribution within the tibiofemoral joint. Purpose/Hypothesis: The purpose was to compare the strains experienced in regions of articular cartilage covered by the meniscus to regions of cartilage not covered by the meniscus. It was hypothesized that in response to walking, tibial cartilage covered by the meniscus would experience lower strains than uncovered tibial cartilage.Descriptive laboratory study.Magnetic resonance imaging (MRI) of the knees of 8 healthy volunteers was performed before and after walking on a treadmill. Using MRI-generated 3-dimensional models of the tibia, cartilage, and menisci, cartilage thickness was measured in 4 different regions based on meniscal coverage and compartment: covered medial, uncovered medial, covered lateral, and uncovered lateral. Strain was defined as the normalized change in cartilage thickness before and after activity.Within each compartment, covered cartilage before activity was significantly thinner than uncovered cartilage before activity ( P < .001). After 20 minutes of walking, all 4 regions experienced significant cartilage thickness decreases ( P < .01). The covered medial region experienced significantly less strain than the uncovered medial region ( P = .04). No difference in strain was detected between the covered and uncovered regions in the lateral compartment ( P = .40).In response to walking, cartilage that is covered by the meniscus experiences lower strains than uncovered cartilage in the medial compartment. These findings provide important baseline information on the relationship between in vivo tibial compressive strain responses and meniscal coverage, which is critical to understanding normal meniscal function.
Meniscus
Compartment (ship)
Strain (injury)
Medial meniscus
Knee cartilage
Cite
Citations (37)
ObjectiveTo evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI).DesignIn this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An “early unloading” (minute 0) and “late unloading” (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the “early unloading” and “late unloading.”ResultsWhen comparing “early unloading” with “late unloading,” our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial (P < 0.001) and lateral (P < 0.001) compartment of the knee and in the tibial cartilage of the medial compartment (P < 0.001).ConclusionIn this study, alterations of the cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.
Degeneration (medical)
Knee cartilage
Cite
Citations (35)
High tibial osteotomy (HTO) is a method used to treat medial compartmental osteoarthritis in the knee. The realignment of the knee changes the loading patterns within the joint and may allow for regeneration of articular cartilage. Magnetic resonance imaging methods can be used to assess the quality of the regenerated cartilage.Altering mechanical alignment through HTO will have predictable effects on articular cartilage, allowing cartilage preservation and possible regeneration. Quality of regenerated cartilage will be inferior to normal articular cartilage.Case series; Level of evidence, 4.Ten patients undergoing medial opening wedge HTO were evaluated using dGEMRIC methods (ie, delayed gadolinium-enhanced magnetic resonance imaging of cartilage) preoperatively and at 6 months, 1 year, and 2 years after HTO. Magnetic resonance images were evaluated by hand segmentation, and T1(Gd) relaxation times reflective of glycosaminoglycan content were determined for these regions of interest using magnetic resonance imaging analysis software.The lateral compartment displayed higher T1(Gd) values than the medial compartment at baseline. Initially, a decrease in T1(Gd) values on the medial side were observed for all patients at 6 months and remained reduced for all but 2 participants at 1 year and 2 years after HTO. However, on the medial side after 6 months, the rate of change for T1(Gd) values shifted from being negative (-9.6 milliseconds per month) to being positive (1.7 milliseconds per month). A positive change in the T1(Gd) of the medial tibial plateau was responsible for the positive overall change in the medial compartment. There was no significant difference in the rate of change on the lateral side (P = .141), with the average over the 2-year period being a decrease of 2.28 milliseconds per month.Medial opening wedge HTO provides subjective improvements in pain and quality of life, but the potential benefit of allowing articular cartilage preservation and possible regeneration is not well established. Results showed that after a nonweightbearing period, the rate of change in the medial compartment changes from negative to positive, indicating the potential for articular cartilage recovery secondary to an improved mechanical environment.
High tibial osteotomy
Cite
Citations (92)