logo
    Fungal–bacterial consortia increase degradation of the phenylurea herbicide diuron in water-unsaturated systems
    0
    Citation
    7
    Reference
    20
    Related Paper
    Although responsible for saving and improving the quality of human life, pesticides have exerted a significant detrimental effect on the environment and have caused serious health problems, resulting in severe criticism of their use (Hayes, 1986). There is often a fundamental conflict between the need for a sustained level of biological activity of a pesticide in the environment and the requirement that the chemical should be degraded to non-toxic and ecologically safe products (Hill, 1978; Casida & Quistad, 1998). The era of modern synthetic pesticides largely dates from 1939 when the insecticidal properties of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) were discovered (Tessier, 1982). Unlike naturally occurring organic compounds, which are readily degraded upon introduction into the environment, some pesticides such as DDT are extremely resistant to biode-gradation by native microflora (Rochkind-Dubinsky, Sayler & Blackburn, 1987a). In most cases, the persistence can be explained by the chemical structure and by the degree of water solubility. In addition, some of these pesticides tend to accumulate in organisms at different trophic levels of the food chain. Chlorinated organic pesticides are one of the major groups of toxic chemicals responsible for environmental contamination and an important potential risk to human health (Kullman & Matsumura, 1996).
    The phenylurea herbicide diuron [N-(3,4-dichlorophenyl)-N,N-dimethylurea] is widely used in a broad range of herbicide formulations and, consequently, it is frequently detected as a major soil and water contaminant in areas where there is extensive use. Diuron has the unfortunate combination of being strongly adsorbed by soil organic matter particles and, hence, slowly degraded in the environment due to its reduced bioavailability. N-Phenylurea herbicides seem to be biodegraded in soil, but it must be kept in mind that this biotic or abiotic degradation could lead to accumulation of very toxic derived compounds, such as 3,4-dichloroaniline. Research was conducted to find procedures that might result in an increase in the bioavailability of diuron in contaminated soils, through solubility enhancement. For this purpose a double system composed of hydroxypropyl-β-cyclodextrin (HPBCD), which is capable of forming inclusion complexes in solution, and a two-member bacterial consortium formed by the diuron-degrading Arthrobacter sulfonivorans (Arthrobacter sp. N2) and the linuron-degrading Variovorax soli (Variovorax sp. SRS16) was used. This consortium can achieve a complete biodegradation of diuron to CO2 with regard to that observed in the absence of the CD solution, where only a 45% biodegradation was observed. The cyclodextrin-based bioremediation technology here described shows for the first time an almost complete mineralization of diuron in a soil system, in contrast to previous incomplete mineralization based on single or consortium bacterial degradation.
    Arthrobacter
    Microcosm
    Citations (47)
    The degradation of herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-triazine) by a soil bacterium is reported. The bacterium involved is a species of Nocardia, which utilizes the atrazine as the sole source of carbon and nitrogen. A new metabolite, 4-amino-2-chloro-1, 3, 5-triazine, of the degradation of atrazine in the presence of glucose has been identified. The results further substantiated that atrazine can be degraded by soil microorganisms and indicated that deamination can also occur, as well as dealkylation. 4-Amino-2-chloro-1, 3, 5-triazine did not show phytotoxic activity to oat (Avena sativa L.), demonstrating that deamination insures detoxification.
    Deamination
    Avena
    Pesticide degradation
    Degradation
    Triazine
    Citations (50)