logo
    TRPC3 channel confers cerebrovascular remodelling during hypertension via transactivation of EGF receptor signalling
    18
    Citation
    46
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Ionic perturbation in vascular smooth muscle cells contributes to cerebrovascular remodelling in the setting of hypertension, but the role of transient receptor potential (TRP) channel superfamily remains unknown. The present study was conducted to define the contribution of TRP channels to cerebrovascular remodelling.By integrating quantitative PCR, western blotting, patch clamping, and Ca(2+) imaging, we identified TRP channel, subfamily canonical, member 3 (TRPC3) as the channel subtype most considerably elevated in basilar arteries of two-kidney, two-clip stroke-prone hypertensive rats. Importantly, administration of pyrazole 3 (Pyr3), a TRPC3 channel blocker, attenuated cerebrovascular remodelling. During hypertension, epidermal growth factor receptor (EGFR) was transactivated, as evidenced by marked EGFR phosphorylation, increased pro-HB-EGF shedding, and elevated activity of ADAM17 (HB-EGF sheddase). ADAM17 activity was increased owing to enhanced activation rather than elevated expression. Remarkably, Pyr3 treatment suppressed EGFR transactivation in hypertension. In proliferating basilar artery smooth muscle cells or basilar arteries of hypertensive rats, co-immunoprecipitation assay revealed an interaction between TRPC3 and ADAM17 upon Ang II stimulation.Collectively, we demonstrated that enhanced EGFR transactivation, due to increased TRPC3 expression and functional coupling of TRPC3/ADAM17, resulted in cerebrovascular remodelling. Therefore, TRPC3-induced EGFR transactivation may be therapeutically exploited to prevent hypertension-induced cerebrovascular remodelling.
    Keywords:
    TRPC3
    Many endothelial cell (EC) functions depend on influx of extracellular Ca 2+ , which is triggered by a variety of mechanical and chemical signals. Here, we discuss possible pathways for this Ca 2+ entry. The superfamily of cation channels derived from the "transient receptor potential" (TRP) channels is introduced. Several members of this family are expressed in ECs, and they provide pathways for Ca 2+ entry. All TRP subfamilies may contribute to the Ca 2+ entry channels or to the regulation of Ca 2+ entry in EC. Members of Ca 2+ entry channels in endothelium probably belong to the canonical TRP subfamily, TRPC. All TRPC1-6 have been discussed as Ca 2+ entry channels that might be store-operated and/or receptor-operated. More importantly, knockout models of TRPC4 have proven that this channel is functionally involved in the regulation of endothelial-dependent vasorelaxation and in the control of EC barrier function. TRPC1 might be an important candidate for involvement of endothelial growth factors. TRPC3 is unequivocally important for a sustained EC Ca 2+ entry. ECs express different patterns of TRPCs, which may increase the variability of TRPC channel function by formation of different multiheteromers. Among the two other TRP subfamilies, TRPMV and TRPM, at least TRPV4 and TRPM4 are EC channels. TRPV4 is a Ca 2+ entry channel that is activated by an increase in cell volume, which might be involved in mechano-sensing, by an increase in temperature, and perhaps by ligand-activation. TRPM4 is a nonselective cation channel, which is not Ca 2+ permeable. It is probably modulated by NO and might be essential for regulating the inward driving force for Ca 2+ entry. Possible modes of TRP channel regulation are described, involving (a) activation via the phospholipase (PL)C g and PLC n pathways; (b) activation by lipids (diacylglycerol [DAG], arachidonic acid); (c) Ca 2+ depletion of Ca 2+ stores in the endoplasmic reticulum; (d) shear stress; and (e) radicals.
    TRPC3
    TRPC5
    Orai1
    TRPV4
    Stretch-activated ion channel
    TRPV
    TRPM7
    Transmembrane channels
    TRPC6
    Citations (179)
    Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1–7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs’ functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
    TRPC3
    TRPC5
    TRPC6
    Stretch-activated ion channel
    Citations (121)
    Transient receptor potential canonical (TRPC) proteins constitute a family of seven (TRPC1-7) nonselective cation channels within the wider TRP superfamily. TRPC1, TRPC3, TRPC4, TRPC5 and TRPC6 channels are expressed in vascular smooth muscle cells from human vessels of all calibers and in smooth muscle from organs such as the uterus and the gastrointestinal tract. TRPC channels have recently emerged as important players in the control of smooth muscle function. This review will focus on the retrospective analysis of studies proposing contributions of TRPC channels to native calcium entry pathways in smooth muscle and to physiological and pathophysiological responses with emphasis on the vascular system.
    TRPC5
    TRPC3
    TRPC6
    Citations (76)
    Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
    TRPC3
    TRPC5
    TRPC6
    Citations (6)
    The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
    TRPC3
    TRPC5
    TRPC6
    TRPV4
    Citations (25)