Panitumumab combined with irinotecan for patients with KRAS wild-type metastatic colorectal cancer refractory to standard chemotherapy: a GERCOR efficacy, tolerance, and translational molecular study
Thierry AndréHélène BlonsMay MabroBenoist ChibaudelJean‐Baptiste BachetC. TournigandMohammed BennamounPascal ArtruSuzanne NguyenC. EbenezerNasredine AïssatAnne CayreFrédérique Penault‐LlorcaPierre Laurent‐PuigAimery de Gramont
89
Citation
35
Reference
10
Related Paper
Citation Trend
Keywords:
Panitumumab
Regimen
Abstract Background A constitutively active RAS protein in the absence of stimulation of the epidermal growth factor receptor (EGFR) is the result of mutations in KRAS and NRAS genes. Mutations in the KRAS exon 2 and outside exon 2 have been found to predict the resistance to anti-EGFR monoclonal therapy. A substantial proportion of metastatic colorectal cancer cases (mCRC) exhibit RAS mutations outside KRAS exon 2, particularly in KRAS exon 3 and 4 and NRAS exons 2, 3. No data about RAS mutations outside KRAS exon 2 are available for Jordanian patients with mCRC. We aim to study the molecular spectrum, frequency, and distribution pattern of KRAS and NRAS mutations in Jordanian patients with mCRC. Methods A cohort of 190 Jordanian metastatic colorectal cancer patients were enrolled in the trial. We detected mutations in exon 2 of the KRAS and NRAS gene as well as mutations outside of exon 2 using the StripAssay technique. The KRAS StripAssay covered 29 mutations and 22 NRAS mutations. Results Mutations were observed in 92 (48.42%) cases, and KRAS exon 2 accounted for 76 cases (83.69%). KRAS G12D was the most common mutation, occurring in 18 cases, followed by KRAS G12A in 16 cases, and G12T in 13 cases. Mutations outside of KRAS exon 2 represented 16.3% of the mutated cases. Among those, 6 cases (6.48%) carried mutations in NRAS exon 2, 3 and 10 cases (10.87%) in KRAS exon 3 and 4. Conclusion The frequency of NRAS and KRAS mutations outside of exon 2 appears to be higher in Jordanian patients in comparison with patients from western countries. KRAS mutations outside of exon 2 should be tested routinely to identify patients who should not be treated with anti-EGFR antibodies.
Cite
Citations (0)
Panitumumab, a fully human antibody against the epidermal growth factor receptor (EGFR), has activity in a subset of patients with metastatic colorectal cancer (mCRC). Although activating mutations in KRAS, a small G-protein downstream of EGFR, correlate with poor response to anti-EGFR antibodies in mCRC, their role as a selection marker has not been established in randomized trials.
Panitumumab
Cite
Citations (3,113)
Panitumumab
Cite
Citations (2)
The epidermal growth factor receptor (EGFR) is an excellent candidate for targeted therapy in colorectal cancer. Recent studies have demonstrated that apart from wild-type KRAS, a wild-type BRAF and NRAS genotype is required for response to anti-EGFR therapy. This suggests that NRAS and BRAF genotype criteria should be used together with KRAS genotype to select patients who will likely benefit from anti-EGFR therapy. We investigated the prevalence of mutations in the KRAS, BRAF and NRAS genes and its correlation with demographic characteristics, tumor location and stage in 100 colorectal carcinoma patients from India. The frequency of KRAS, BRAF and NRAS mutations was found to be 23%, 17% and 2.0%, respectively. There was no significant difference in KRAS, NRAS and BRAF mutation with respect to gender, age, tumor location (colon vs rectum) and clinicopathological stage. In addition, we found a novel point variant (T20I) of unknown significance in NRAS exon 1 in addition to a KRAS codon 12 mutation in one of the rectal carcinoma patients. In the present study, combined evaluation of genetic biomarkers (KRAS, NRAS and BRAF) was able to classify 42% of colorectal cancer patients as likely non-responders to anti-EGFR therapy.
Targeted Therapy
Cite
Citations (24)
Pyrosequencing
Cite
Citations (0)
Regimen
Cite
Citations (18)
Cite
Citations (7)
Panitumumab, a fully human antibody against the epidermal growth factor receptor (EGFR), has activity in a subset of patients with metastatic colorectal cancer (mCRC). Although activating mutations in KRAS, a small G-protein downstream of EGFR, correlate with poor response to anti-EGFR antibodies in mCRC, their role as a selection marker has not been established in randomized trials.
Panitumumab
Cite
Citations (13)
3617 Background: An exploratory biomarker analysis of the randomized, phase 3 monotherapy 20020408 study of pmab vs best supportive care (BSC) demonstrated that mutations in KRAS exon 3 and NRAS exons 2 and 3 appeared to be predictive of pmab response (Peeters et al, 2013). We expanded these results to determine whether mutations in exon 4 of the KRAS and NRAS genes are predictive for pmab treatment and to determine the treatment effect in the overall wild-type (WT) KRAS and NRAS population. Methods: Using a combination of Next Generation Sequencing, Sanger Sequencing, and WAVE-based SURVEYOR Scan Kits from Transgenomic, archival patient tumors were examined for mutations in KRAS and NRAS exon 4. These data were combined with previously presented data from KRAS and NRAS exon 2 and 3 analyses for evaluation of the comprehensive WT KRAS and NRAS subgroup. Results: 9/243 (3.7%) and 2/243 (0.8%) patient tumors with WT KRAS exon 2 status harbored a mutation in KRAS or NRAS exon 4, respectively. One tumor had mutations in both KRAS and NRAS exon 4. In the pmab arm, patients with WT KRAS and WT NRAS tumor status had an objective response rate (ORR) of 15% (11/72) whereas patients with mutant (MT) KRAS or MT NRAS tumor status had an ORR of 1% (1/95; 1 patient with MT KRAS exon 4 had a partial response). There were no responses in the BSC arm regardless of the tumor status. In this analysis set, the treatment hazard ratio (HR; pmab:BSC) for progression-free survival (PFS) in the WT KRAS and WT NRAS subgroup was 0.38 (95% CI: 0.27 - 0.56), and in the MT KRAS or MT NRAS subgroup was 0.98 (95% CI: 0.73 - 1.31). The original WT KRAS exon 2 subgroup PFS HR was 0.45 (95% CI: 0.34 - 0.59) (Amado et al, 2007). Conclusions: This exploratory analysis suggests that mutations in KRAS and NRAS exon 4 occur in a small, but meaningful percentage of patients with mCRC. Extending previous findings from this study in patients with MT KRAS and/or MT NRAS exon 2 and/or 3 tumors, patients with MT KRAS and/or MT NRAS exon 4 tumors do not appear to benefit from pmab therapy. Clinical trial information: NCT00113763.
Panitumumab
Sanger sequencing
Cite
Citations (43)