logo
    Dual effects of noradrenaline on astroglial production of chemokines and pro-inflammatory mediators
    30
    Citation
    66
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Background Noradrenaline (NA) is known to limit neuroinflammation. However, the previously described induction by NA of a chemokine involved in the progression of immune/inflammatory processes, such as chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein-1 (MCP-1), apparently contradicts NA anti-inflammatory actions. In the current study we analyzed NA regulation of astroglial chemokine (C-X3-C motif) ligand 1 (CX3CL1), also known as fractalkine, another chemokine to which both neuroprotective and neurodegenerative actions have been attributed. In addition, NA effects on other chemokines and pro-inflammatory mediators were also analyzed. Methods Primary astrocyte-enriched cultures were obtained from neonatal Wistar rats. These cells were incubated for different time durations with combinations of NA and lipopolysaccharide (LPS). The expression and synthesis of different proteins was measured by RT-PCR and enzyme-linked immunosorbent assay (ELISA) or enzyme immunoassays. Data were analyzed by one-way analysis of variance (ANOVA), followed by Newman-Keuls multiple comparison tests. Results The data presented here show that in control conditions, NA induces the production of CX3CL1 in rat cultured astrocytes, but in the presence of an inflammatory stimulus, such as LPS, NA has the opposite effect inhibiting CX3CL1 production. This inversion of NA effect was also observed for MCP-1. Based on the observation of this dual action, NA regulation of different chemokines and pro-inflammatory cytokines was also analyzed, observing that in most cases NA exerts an inhibitory effect in the presence of LPS. One characteristic exception was the induction of cyclooxygenase-2 (COX-2), where a summative effect was detected for both LPS and NA. Conclusion These data suggest that NA effects on astrocytes can adapt to the presence of an inflammatory agent reducing the production of certain cytokines, while in basal conditions NA may have the opposite effect and help to maintain moderate levels of these cytokines.
    Keywords:
    CX3CL1
    Monocyte
    Chemokines play critical roles in leukocyte trafficking in normal and inflammatory conditions. The primary roles of chemokines are to activate integrins for leukocyte adherence on endothelial cells and to induce chemotaxis of leukocytes in tissue microenvironments. Specificity in leukocyte migration is regulated at multiple levels. First, it is achieved through differential tissue expression of chemokines and adhesion molecules. Second, it is achieved by limited and differential expression of chemokine receptors by leukocyte subsets. Third, combinatorial expression of multiple chemokine receptors and adhesion molecules makes leukocyte migration more specific. Homing of leukocytes into various tissue sites (e.g. inflamed skin, small intestine, mucosal tissues, T cell areas vs. B cell follicles) requires different chemokines and chemokine receptors. Furthermore, distinct immune responses and diseases (e.g. Th1 vs. Th2 responses) involve different sets of chemokines and leukocyte subsets. This review examines the recent advances in research on chemokines and chemokine receptors in tissue-specific migration of immune cells, and discusses potential targets of intervention in chemokine-mediated leukocyte migration in normal and diseased conditions.
    CCR1
    CCL13
    CCL7
    CX3CL1
    CCR10
    CCL21
    CC chemokine receptors
    CXC chemokine receptors
    CXCL16
    Leukocyte Trafficking
    Homing (biology)
    CXCL2
    CCR2
    Citations (90)
    Systemic sclerosis (SSc) is characterized by fibrosis and microvascular abnormalities including dysregulated angiogenesis. Chemokines, in addition to their chemoattractant properties, have the ability to modulate angiogenesis. Chemokines lacking the enzyme-linked receptor (ELR) motif, such as monokine induced by interferon-γ (IFN-γ) (MIG/CXCL9) and IFN-inducible protein 10 (IP-10/CXCL10), inhibit angiogenesis by binding CXCR3. In addition, CXCL16 promotes angiogenesis by binding its unique receptor CXCR6. In this study, we determined the expression of these chemokines and receptors in SSc skin and serum.Immunohistology and enzyme-linked immunosorbent assays (ELISAs) were used to determine chemokine and chemokine receptor expression in the skin and serum, respectively, of SSc and normal patients. Endothelial cells (ECs) were isolated from SSc skin biopsies and chemokine and chemokine receptor expression was determined by quantitative PCR and immunofluorescence staining.Antiangiogenic IP-10/CXCL10 and MIG/CXCL9 were elevated in SSc serum and highly expressed in SSc skin. However, CXCR3, the receptor for these chemokines, was decreased on ECs in SSc vs. normal skin. CXCL16 was elevated in SSc serum and increased in SSc patients with early disease, pulmonary arterial hypertension, and those that died during the 36 months of the study. In addition, its receptor CXCR6 was overexpressed on ECs in SSc skin. At the mRNA and protein levels, CXCR3 was decreased while CXCR6 was increased on SSc ECs vs. human microvascular endothelial cells (HMVECs).These results show that while the expression of MIG/CXCL9 and IP-10/CXCL10 are elevated in SSc serum, the expression of CXCR3 is downregulated on SSc dermal ECs. In contrast, CXCL16 and CXCR6 are elevated in SSc serum and on SSc dermal ECs, respectively. In all, these findings suggest angiogenic chemokine receptor expression is likely regulated in an effort to promote angiogenesis in SSc skin.
    CXCL9
    CXCR3
    CXCL11
    CXCL16
    CX3CL1
    CCR3
    CXCL14
    CXC chemokine receptors
    Citations (79)
    More than one-half of the ~50 human chemokines have been associated with or implicated in the pathogenesis of type 1 diabetes, yet their actual expression patterns in the islet environment of type 1 diabetic patients remain, at present, poorly defined. Here, we have integrated a human islet culture system, murine models of virus-induced and spontaneous type 1 diabetes, and the histopathological examination of pancreata from diabetic organ donors with the goal of providing a foundation for the informed selection of potential therapeutic targets within the chemokine/receptor family. Chemokine (C-C motif) ligand (CCL) 5 (CCL5), CCL8, CCL22, chemokine (C-X-C motif) ligand (CXCL) 9 (CXCL9), CXCL10, and chemokine (C-X3-C motif) ligand (CX3CL) 1 (CX3CL1) were the major chemokines transcribed (in an inducible nitric oxide synthase–dependent but not nuclear factor-κB–dependent fashion) and translated by human islet cells in response to in vitro inflammatory stimuli. CXCL10 was identified as the dominant chemokine expressed in vivo in the islet environment of prediabetic animals and type 1 diabetic patients, whereas CCL5, CCL8, CXCL9, and CX3CL1 proteins were present at lower levels in the islets of both species. Of importance, additional expression of the same chemokines in human acinar tissues emphasizes an underappreciated involvement of the exocrine pancreas in the natural course of type 1 diabetes that will require consideration for additional type 1 diabetes pathogenesis and immune intervention studies.
    CX3CL1
    CXCL9
    CCL5
    CCL18
    CXCL16
    CXCL5
    CXCL14
    Citations (129)
    Background Chronic obstructive pulmonary disease (COPD) is associated with increased risk of severe COVID-19, but the mechanisms are unclear. Besides, patients with severe COVID-19 have been reported to have increased levels of several immune mediators. Methods Ninety-two proteins were quantified in 315 plasma samples from 118 asthmatics, 99 COPD patients and 98 healthy controls (age 40-90 years), who were recruited in Colombia before the COVID-19 pandemic. Protein levels were compared between each disease group and healthy controls. Significant proteins were compared to the gene signatures of SARS-CoV-2 infection reported in the “COVID-19 Drug and Gene Set Library” and with experimentally tested protein biomarkers of severe COVID-19. Results Forty-one plasma proteins showed differences between patients and controls. Asthmatic patients have increased levels in IL-6 while COPD patients have a broader systemic inflammatory dysregulation driven by HGF, OPG, and several chemokines (CXCL9, CXCL10, CXCL11, CX3CL1, CXCL1, MCP-3, MCP-4, CCL3, CCL4 and CCL11). These proteins are involved in chemokine signaling pathways related with response to viral infections and some, were found up-regulated upon SARS-CoV-2 experimental infection of Calu-3 cells as reported in the COVID-19 Related Gene Sets database. An increase of HPG, CXCL9, CXCL10, IL-6, MCP-3, TNF and EN-RAGE has also been experimentally detected in patients with severe COVID-19. Conclusions COPD patients have altered levels of plasma proteins that have been reported increased in patients with severe COVID-19. Our study suggests that COPD patients have a systemic dysregulation in chemokine networks (including HGF and CXCL9) that could make them more susceptible to severe COVID-19. Also, that IL-6 levels are increased in some asthmatic patients (especially in females) and this may influence their response to COVID-19. The findings in this study depict a novel panel of inflammatory plasma proteins in COPD patients that may potentially associate with increased susceptibility to severe COVID-19 and might be useful as a biomarker signature after future experimental validation.
    CXCL9
    CX3CL1
    CCL11
    CXCL1
    Citations (14)
    Abstract Background Chronic obstructive pulmonary disease (COPD) is associated with increased risk of severe COVID-19, but the mechanisms are unclear. Besides, patients with severe COVID-19 have been reported to have increased levels of several immune mediators. Objective To perform an immunoproteomic profiling of dysregulated plasma proteins in patients with asthma and COPD and to evaluate their relationship with biomarkers of severe COVID-19. Methods Ninety-two proteins were quantified in 315 plasma samples from adult subjects (age 40-90 years) including 118 asthmatics, 99 COPD patients and 98 healthy controls, that have been recruited in two reference pneumology clinics in Colombia before the beginning of the COVID-19 pandemic. Protein levels were compared between each disease group and healthy controls. Significant proteins were compared to the gene signatures of SARS-CoV-2 infection reported in the “COVID-19 Drug and Gene Set Library” and with known protein biomarkers of severe COVID-19. Results Forty-one plasma proteins showed differences between patients and controls. Asthmatic patients have increased levels in IL-6 while COPD patients have a broader systemic inflammatory dysregulation driven by HGF, OPG, and several chemokines (CXCL9, CXCL10, CXCL11, CX3CL1, CXCL1, MCP-3, MCP-4, CCL3, CCL4 and CCL11). These proteins are involved in chemokine signaling pathways related with response to viral infections and some, were found up-regulated upon SARS-CoV-2 experimental infection of Calu-3 cells as reported in the COVID-19 Related Gene Sets database. An increase of HPG, CXCL9, CXCL10, IL-6, MCP-3, TNF and EN-RAGE has also been found in patients with severe COVID-19. Conclusions COPD patients have altered levels of plasma proteins that have been reported increased in patients with severe COVID-19. Our study suggests that COPD patients have a systemic dysregulation in chemokine networks (including HGF and CXCL9) that could make them more susceptible to severe COVID-19. Our study also suggest that IL-6 levels are increased in some asthmatics and this may influence their immune response to COVID-19.
    CXCL9
    CX3CL1
    CCL11
    CXCL1
    CXCL5
    Purpose.: To investigate the effects of T-cell–derived cytokines on gene and protein expression of chemokines in a human RPE cell line (ARPE-19). Methods.: We used an in vitro coculture system in which the RPE and CD3/CD28–activated T-cells were separated by a membrane. RPE cell expression of chemokine genes was quantified using three different types of microarrays. Protein expression was determined by single and multiplex ELISA and immunoblotting. Results.: Coculture with activated T-cells increased RPE mRNA and protein expression of chemokines CCL2 (MCP-1); CCL5 (RANTES); CCL7 (MCP-3); CCL8 (MCP-2); CXCL1 (GRO-α); IL8 (CXCL8); CXCL9 (MIG); CXCL10 (IP10); CXCL11 (ITAC); and CX3CL1 (fractalkine). CCL7, CXCL9, CXCL10, and CXCL11 were secreted significantly more in the apical direction. Using recombinant human cytokines and neutralizing antibodies, we identified IFNγ and TNFα as the two major T-cell–derived cytokines responsible for the RPE response. For CCL5, CXCL9, CXCL10, CXCL11, CXCL16, and CX3CL1, we observed a synergistic effect of IFNγ and TNFα in combination. CCL20, CXCL1, CXCL6, and IL8 were negatively regulated by IFNγ. Conclusions.: RPE cells responded to exposure to T-cell–derived cytokines by upregulating expression of multiple chemokines related to microglial, T-cell, and monocyte chemotaxis and activation. This inflammatory stress response may have implications for immune homeostasis in the retina, and for the further understanding of inflammatory ocular diseases such as uveitis and AMD.
    CCL7
    CCL5
    CXCL16
    CXCL2
    CXCL9
    CXCL1
    CX3CL1
    CCL20
    CXCL11
    Interleukin 8
    Citations (59)
    Chemokine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Chemokine Receptors [426, 425, 32]) comprise a large subfamily of 7TM proteins that bind one or more chemokines, a large family of small cytokines typically possessing chemotactic activity for leukocytes. Additional hematopoietic and non-hematopoietic roles have been identified for many chemokines in the areas of embryonic development, immune cell proliferation, activation and death, viral infection, and as antibiotics, among others. Chemokine receptors can be divided by function into two main groups: G protein-coupled chemokine receptors, which mediate leukocyte trafficking, and "Atypical chemokine receptors", which may signal through non-G protein-coupled mechanisms and act as chemokine scavengers to downregulate inflammation or shape chemokine gradients [32].Chemokines in turn can be divided by structure into four subclasses by the number and arrangement of conserved cysteines. CC (also known as β-chemokines; n= 28), CXC (also known as α-chemokines; n= 17) and CX3C (n= 1) chemokines all have four conserved cysteines, with zero, one and three amino acids separating the first two cysteines respectively. C chemokines (n= 2) have only the second and fourth cysteines found in other chemokines. Chemokines can also be classified by function into homeostatic and inflammatory subgroups. Most chemokine receptors are able to bind multiple high-affinity chemokine ligands, but the ligands for a given receptor are almost always restricted to the same structural subclass. Most chemokines bind to more than one receptor subtype. Receptors for inflammatory chemokines are typically highly promiscuous with regard to ligand specificity, and may lack a selective endogenous ligand. G protein-coupled chemokine receptors are named acccording to the class of chemokines bound, whereas ACKR is the root acronym for atypical chemokine receptors [33]. There can be substantial cross-species differences in the sequences of both chemokines and chemokine receptors, and in the pharmacology and biology of chemokine receptors. Endogenous and microbial non-chemokine ligands have also been identified for chemokine receptors. Many chemokine receptors function as HIV co-receptors, but CCR5 is the only one demonstrated to play an essential role in HIV/AIDS pathogenesis. The tables include both standard chemokine receptor names [675] and aliases.
    CCR1
    CXC chemokine receptors
    CCR3
    CCL7
    CCL13
    CCL21
    CCR10
    CX3CL1
    CC chemokine receptors
    XCL2
    CXCR3
    CCL18
    Citations (2)
    Chemokines and their receptors play a pivotal role in the development and maturation of immune cells and immune response, and also associated with the development of many diseases. There are more than 50 kinds of chemokines and 20 kinds of their receptors that have been identified from human or mice, but only a few are known in domestic veterinary species. The chemokines and their receptors are crucial during inflammatory responses for a timely recruitment of specific leukocyte subpopulations to sites of tissue damage. However, chemokines and their receptors are also important in angiogenesis and angiostasis, T, B cell development and maturation, T, B cell -homing. On the other hand, many domestic animal diseases are associated with overexpression of chemokines and their receptors. Furthermore, some chemokine/chemokine receptors like molecules or chemokine binding proteins encoded by a number of veterinary viral pathogens and the putative biological functions are introduced. Further research on the promising area in the appliance of chemokines/chemokine receptors is discussed.
    CCR10
    CCR1
    CCL7
    CXC chemokine receptors
    CCR3
    CCL13
    CX3CL1
    Homing (biology)
    CCL21
    CC chemokine receptors
    Citations (0)