Efficient Editing of Malaria Parasite Genome Using the CRISPR/Cas9 System
Cui ZhangBo XiaoYuanyuan JiangYihua ZhaoZhenkui LiHan GaoYuan LingJun WeiShaoneng LiMingke LuXin‐zhuan SuHuiting CuiJing Yuan
131
Citation
26
Reference
10
Related Paper
Citation Trend
Abstract:
Malaria parasites are unicellular organisms residing inside the red blood cells, and current methods for editing the parasite genes have been inefficient. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and Cas9 endonuclease-mediated genome editing) system is a new powerful technique for genome editing and has been widely employed to study gene function in various organisms. However, whether this technique can be applied to modify the genomes of malaria parasites has not been determined. In this paper, we demonstrated that Cas9 is able to introduce site-specific DNA double-strand breaks in the Plasmodium yoelii genome that can be repaired through homologous recombination. By supplying engineered homologous repair templates, we generated targeted deletion, reporter knock-in, and nucleotide replacement in multiple parasite genes, achieving up to 100% efficiency in gene deletion and 22 to 45% efficiencies in knock-in and allelic replacement. Our results establish methodologies for introducing desired modifications in the P. yoelii genome with high efficiency and accuracy, which will greatly improve our ability to study gene function of malaria parasites. Importance: Malaria, caused by infection of Plasmodium parasites, remains a world-wide public health burden. Although the genomes of many malaria parasites have been sequenced, we still do not know the functions of approximately half of the genes in the genomes. Studying gene function has become the focus of many studies; however, editing genes in malaria parasite genomes is still inefficient. Here we designed several efficient approaches, based on the CRISPR/Cas9 system, to introduce site-specific DNA double-strand breaks in the Plasmodium yoelii genome that can be repaired through homologous recombination. Using this system, we achieved high efficiencies in gene deletion, reporter tagging, and allelic replacement in multiple parasite genes. This technique for editing the malaria parasite genome will greatly facilitate our ability to elucidate gene function.Keywords:
Plasmodium yoelii
Cite
Citations (228)
Cite
Citations (413)
Genome editing offers promising solutions to genetic disorders by editing DNA sequences or modulating gene expression. The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) technology can be used to edit single or multiple genes in a wide variety of cell types and organisms in vitro and in vivo. Herein, we review the rapidly developing CRISPR/Cas9-based technologies for disease modeling and gene correction and recent progress toward Cas9/guide RNA (gRNA) delivery based on viral and nonviral vectors. We discuss the relative merits of delivering the genome editing elements in the form of DNA, mRNA, or protein, and the opportunities of combining viral delivery of a transgene encoding Cas9 with nonviral delivery of gRNA. We highlight the lessons learned from nonviral gene delivery in the past three decades and consider their applicability for CRISPR/Cas9 delivery. We also include a discussion of bioinformatics tools for gRNA design and chemical modifications of gRNA. Finally, we consider the extracellular and intracellular barriers to nonviral CRISPR/Cas9 delivery and propose strategies that may overcome these barriers to realize the clinical potential of CRISPR/Cas9-based genome editing.
Guide RNA
Cite
Citations (477)
Zinc finger nuclease
Nuclease
Cite
Citations (87)
The ongoing advent of genome editing with programmable nucleases, including zinc-finger nuclease (ZFN), TAL effector nuclease (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated RNA-guided endonuclease Cas9 (CRISPR/Cas9), have spurred the hematopoietic stem cell gene therapy (HSC-GT). In particular, CRISPR/Cas9-mediated gene editing revealed promising outcomes in several preclinical disease models including inherited and neoplastic hematological diseases. In this review, we focused on the utilization of the CRISPR/Cas9 system as a possible treatment option for hemoglobinopathies and hematological tumors. We summarize the recent advances with CRISPR/Cas9 and its therapeutic potential for genome editing in cells from hematopoietic origin. We also critically discussed the limitations inherent to the CRISPR/Cas9 and possible alternatives for the improvement of genome editing.
Zinc finger nuclease
Nuclease
Genome Engineering
Cite
Citations (16)
Abstract Targeted genome editing using engineered nucleases such as ZFNs and TALENs has been rapidly replaced by the CRISPR/Cas9 (clustered, regulatory interspaced, short palindromic/ CRISPR-associated nuclease) system. CRISPR/Cas9 technology represents a significant improvement enabling a new level of targeting, efficiency and simplicity. Gene editing mediated by CRISPR/Cas9 has been recently used not only in bacteria but in many eukaryotic cells and organisms, from yeasts to mammals. Other modifications of the CRISPR-Cas9 system have been used to introduce heterologous domains to regulate gene expressions or label specific loci in various cell types. The review focuses not only on native CRISPR/Cas systems which evolved in prokaryotes as an endogenous adaptive defense mechanism against foreign DNA attacks, but also on the CRISPR/Cas9 adoption as a powerful tool for site-specific gene modifications in fungi, plants and mammals.
Nuclease
Zinc finger nuclease
CRISPR interference
Trans-activating crRNA
Cite
Citations (1)
Cite
Citations (11)
The rapid development of programmable nuclease-based genome editing technologies has enabled targeted gene disruption and correction both in vitro and in vivo This revolution opens up the possibility of precise genome editing at target genomic sites to modulate gene function in animals and plants. Among several programmable nucleases, the type II clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) system has progressed remarkably in recent years, leading to its widespread use in research, medicine and biotechnology. In particular, CRISPR-Cas9 shows highly efficient gene editing activity for therapeutic purposes in systems ranging from patient stem cells to animal models. However, the development of therapeutic approaches and delivery methods remains a great challenge for biomedical applications. Herein, we review therapeutic applications that use the CRISPR-Cas9 system and discuss the possibilities and challenges ahead.
Nuclease
Guide RNA
Genome Engineering
Cite
Citations (25)
Gene modifications in animal models have been greatly facilitated through the application of targeted genome editing tools. The prokaryotic CRISPR/Cas9 type II genome editing system has recently been applied in cell lines and vertebrates. However, we still have very limited information about the efficiency of mutagenesis, germline transmission rates and off-target effects in genomes of model organisms. We now demonstrate that CRISPR/Cas9 mutagenesis in zebrafish is highly efficient, reaching up to 86.0%, and is heritable. The efficiency of the CRISPR/Cas9 system further facilitated the targeted knock-in of a protein tag provided by a donor oligonucleotide with knock-in efficiencies of 3.5-15.6%. Mutation rates at potential off-target sites are only 1.1-2.5%, demonstrating the specificity of the CRISPR/Cas9 system. The ease and efficiency of the CRISPR/Cas9 system with limited off-target effects make it a powerful genome engineering tool for in vivo studies.
Genome Engineering
Cite
Citations (465)
Abstract Improvements in genome editing technology in birds using primordial germ cells (PGCs) have made the development of innovative era genome-edited avian models possible, including specific chicken bioreactors, production of knock-in/out chickens, low-allergenicity eggs, and disease-resistance models. New strategies, including CRISPR/Cas9, have made gene editing easy and highly efficient in comparison to the well-known process of homologous recombination. The clustered regularly interspaced short palindromic repeats (CRISPR) technique enables us to understand the function of genes and/or to modify the animal phenotype to fit a specific scientific or production target. To facilitate chicken genome engineering applications, we present a concise description of the method and current application of the CRISPR/Cas9 system in chickens. Different strategies for delivering sgRNAs and the Cas9 protein, we also present extensively. Furthermore, we describe a new gesicle technology as a way to deliver Cas9/sgRNA complexes into target cells, and we discuss the advantages and describe basal applications of the CRISPR/Cas9 system in a chicken model.
Cite
Citations (28)