logo
    VARIATION IN HOST SPECIFICITY BETWEEN SPECIES OF AVIAN HEMOSPORIDIAN PARASITES: EVIDENCE FROM PARASITE MORPHOLOGY AND CYTOCHROMEBGENE SEQUENCES
    129
    Citation
    33
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    A parasite's shift to a new host may have serious evolutionary consequences, since host switching usually is associated with a change in virulence and may lead to the evolution of emerging diseases. This phenomenon remains insufficiently studied in wildlife. Here, we combine microscopic examination of blood films and PCR-based methods to investigate the natural host specificity of Haemoproteus and Plasmodium spp. in birds of 4 families of the Passeriformes within a small geographic area. The material was collected on the Curonian Spit in the Baltic Sea between May and July in 2003–2004. A nested-PCR protocol was used for amplifying and sequencing a fragment of 480 nucleotides of the cytochrome b gene of the mtDNA of these parasites. Blood samples from 282 birds, which were positive both by microscopic examination of blood films and mtDNA amplification, were used in this study. We found that Haemoproteus majoris (lineages hPARUS1, hCCF5, hWW2, and hPHSIB1), Haemoproteus sp. (hWW1), Plasmodium (Haemamoeba) sp. (pSGS1), and Plasmodium (Haemamoeba) sp. (pGRW11) are capable of infecting birds belonging to different families of passeriform birds. Some species of Haemoproteus are less specific than have been traditionally believed. Haemoproteus majoris appears to have a genetic predisposition to have a broad host range. The level of host specificity varies markedly among different species of hemosporidian parasites of birds. The natural host range is thus not a reliable taxonomic character in the systematics of these parasites in the form in which it is still accepted in some recent taxonomic studies.
    Keywords:
    Haemoproteus
    Plasmodium (life cycle)
    Avian Malaria
    Avian malaria parasites (genera Haemoproteus , Plasmodium , and Leucocytozoon ) affect bird demography, distribution limits, and community structure, yet most bird communities and populations remain unsurveyed. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe the diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2150–2460 meters). We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian malaria genera. The combined infection rate was 36.6%, with the highest infection rate for Haemoproteus (20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus , 12 Leucocytozoon , 6 Plasmodium ). When compared to all previously known lineages in the MalAvi and GenBank databases, 65% (28) of the haplotypes that we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera. Haemoproteus and Leucocytozoon were each restricted to three avian host-clades or groups (out of six), while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian malaria diversity to be 70 haplotypes (95% CI: 43–98); thus, we may have already sampled ~60% of the diversity of avian malaria in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the present study. Fortunately, this study is fully extendable via voucher specimens, frozen tissues, blood smears, parasite images, and documentation provided in open-access databases (MalAvi, Genbank, and ARCTOS).
    Haemoproteus
    Leucocytozoon
    Avian Malaria
    Plasmodium (life cycle)
    Malaria is a health problem not only in human and veterinary medicine, but also in wildlife. Several theoretical studies have suggested that avian malaria transmission might be increasing in Europe. However, there are few direct empirical observations. Research on the distribution of avian haemosporidian parasites was initiated around the Curonian Lagoon, Europe in 1976 and continues since. This has provided an opportunity to compare the prevalence and diversity of avian malaria parasites (genus Plasmodium) and related haemosporidians (genera Haemoproteus and Leucocytozoon) in the same bird species using similar methodology but examined in two groups 40 years apart. This study aimed to describe and discuss the available data on this subject.Prevalence and diversity of haemosporidians was compared in two passeriform bird groups, which consisted of the same species that were sampled on the coast of the Curonian Lagoon (Russia, Lithuania) during the same season (September) in 1978-1983 (bird Group 1) and 2020 (bird Group 2). Blood films of the European robin, Coal tit, Great tit, Eurasian wren, and Eurasian jay were screened by microscopic examination. Parasites were identified using morphological characters of blood stages. PCR-based methods were applied to determine genetic lineages of the parasites found in birds of Group 2.No difference was discernible in the prevalence or diversity of haemosporidian parasites belonging to Haemoproteus, Leucocytozoon, Plasmodium (Haemamoeba) and Plasmodium (Novyella) between birds of Groups 1 and 2. This indicates a similar rate of transmission and relatively stable epidemiological situation in regard of these infections during the past 40 years. The prevalence of only one malaria parasite species, Plasmodium (Giovannolaia) circumflexum, increased remarkably, but only in Coal tit, Great tit, and Eurasian wren, with no significant prevalence change in European robin and Eurasian jay.Plasmodium circumflexum is spreading and seems to be a new invasive avian malaria pathogen in countries with cold climates. The exceptionally high prevalence of P. circumflexum in birds breeding in relatively close-nests suggests an important role of the nesting biology related to bird-vector interaction in this pathogen transmission. The epidemiological situation seems to be relatively stable in regard of other studied avian hosts and haemosporidian parasites in northern Europe.
    Haemoproteus
    Leucocytozoon
    Avian Malaria
    Plasmodium (life cycle)
    Parasitology
    Avian malaria occurs almost worldwide and is caused by Haemosporida parasites (Plasmodium, Haemoproteus and Leucocytozoon). Vectors such as mosquitoes, hippoboscid flies or biting midges are required for the transmission of these parasites. There are few studies about avian malaria parasites on Madagascar but none about suitable vectors. To identify vectors of avian Plasmodium parasites on Madagascar, we examined head, thorax and abdomen of 418 mosquitoes from at least 18 species using a nested PCR method to amplify a 524 bp fragment of the haemosporidian mitochondrial cytochrome b gene. Sequences obtained were then compared with a large dataset of haemosporidian sequences detected in 45 different bird species (n = 686) from the same area in the Maromizaha rainforest. Twenty-one mosquitoes tested positive for avian malaria parasites. Haemoproteus DNA was found in nine mosquitoes (2.15%) while Plasmodium DNA was found in 12 mosquitoes (2.87%). Seven distinct lineages were identified among the Plasmodium DNA samples. Some lineages were also found in the examined bird samples: Plasmodium sp. WA46 (EU810628.1) in the Madagascar bulbul, Plasmodium sp. mosquito 132 (AB308050.1) in 15 bird species belonging to eight families, Plasmodium sp. PV12 (GQ150194.1) in eleven bird species belonging to eight families and Plasmodium sp. P31 (DQ839060.1) was found in three weaver bird species. This study provides the first insight into avian malaria transmission in the Maromizaha rainforest in eastern Madagascar. Five Haemoproteus lineages and seven Plasmodium lineages were detected in the examined mosquitoes. Complete life-cycles for the specialist lineages WA46 and P31 and for the generalist lineages mosquito132 and PV12 of Plasmodium are proposed. In addition, we have identified for the first time Anopheles mascarensis and Uranotaenia spp. as vectors for avian malaria and offer the first description of vector mosquitoes for avian malaria in Madagascar.
    Avian Malaria
    Plasmodium (life cycle)
    Haemoproteus
    Leucocytozoon
    Citations (25)
    Avian malaria (caused by Plasmodium spp.) and avian malaria-like infections (caused by Haemoproteus spp.) are widespread and can seriously affect the health of their bird hosts, especially of immunologically naïve individuals. Therefore, these parasites have long been in the focus of bird-parasite studies. However, the species richness and diversity of these protozoan species have only been revealed since the use of molecular techniques. Diversity and prevalence of these parasites among different bird species and even between populations of a species show a large variation. Here, we investigated prevalence of avian malaria and avian malaria-like parasites in two distant populations of a non-migratory wetland specialist passerine, the bearded reedling (Panurus biarmicus). While previous studies have shown that reed-dwelling bird species often carry various blood parasite lineages and the presence of the vectors transmitting Plasmodium and Haemoproteus species has been confirmed from our study sites, prevalence of these parasites was extremely low in our populations. This may either suggest that bearded reedlings may avoid or quickly clear these infections, or these parasites cause high mortality in this species. The remarkably low prevalence of infection in this species is consistent with earlier studies and makes bearded reedlings a possible model organism for investigating the genetic or behavioural adaptations of parasite resistance.
    Haemoproteus
    Avian Malaria
    Plasmodium (life cycle)
    Citations (4)
    Avian malaria is a mosquito-borne disease caused by Plasmodium spp. Avian plasmodia are recognized conservation-threatening pathogens due to their potential to cause severe epizootics when introduced to bird populations with which they did not co-evolve. Penguins are considered particularly susceptible, as outbreaks in captive populations will often lead to high morbidity and rapid mortality. We used a multidisciplinary approach to investigate an outbreak of avian malaria in 28 Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center during summer 2009 in Florianópolis, Brazil. Hemosporidian infections were identified by microscopic and molecular characterization in 64% (18/28) of the penguins, including Plasmodium (Haemamoeba) tejerai, Plasmodium (Huffia) elongatum, a Plasmodium (Haemamoeba) sp. lineage closely related to Plasmodium cathemerium, and a Haemoproteus (Parahaemoproteus) sp. lineage closely related to Haemoproteus syrnii. P. tejerai played a predominant role in the studied outbreak and was identified in 72% (13/18) of the hemosporidian-infected penguins, and in 89% (8/9) of the penguins that died, suggesting that this is a highly pathogenic parasite for penguins; a detailed description of tissue meronts and lesions is provided. Mixed infections were identified in three penguins, and involved P. elongatum and either P. tejerai or P. (Haemamoeba) sp. that were compatible with P. tejerai but could not be confirmed. In total, 32% (9/28) penguins died over the course of 16 days despite oral treatment with chloroquine followed by sulfadiazine-trimethoprim. Hemosporidian infections were considered likely to have occurred during rehabilitation, probably from mosquitoes infected while feeding on local native birds, whereas penguin-mosquito-penguin transmission may have played a role in later stages of the outbreak. Considering the seasonality of the infection, rehabilitation centers would benefit from narrowing their efforts to prevent avian malaria outbreaks to the penguins that are maintained throughout summer.
    Avian Malaria
    Plasmodium (life cycle)
    Haemoproteus
    Avian malaria caused by Plasmodium and the malaria-like parasites of the genus Haemoproteus has been regularly described in multiple regions worldwide. These parasites significantly affect many avian taxa, including domestic chickens and fighting cocks. There are limited epidemiological studies of these blood parasites in vertebrate hosts, especially in Thailand.This study used microscopic examination of blood samples and PCR amplification exploiting primers for nucleotide sequences of Plasmodium or Haemoproteus species based on the cytochrome b gene to determine the occurrence of Plasmodium spp. in fighting cocks.Examination of 249 blood samples of fighting cocks revealed that 41.37% (103/249) were positive for malaria by microscopic examination and 88.76% (221/249) were positive by DNA amplification. Sequencing and DNA analysis of 61 PCR products revealed that infection by Plasmodium juxtanucleare was the most common avian malaria in fighting cocks in Thailand followed by infections by Plasmodium gallinaceum; however, Haemoproteus infection was not discovered.This study indicated that plasmodiasis is widespread in fighting cocks in Thailand although the prevalence was not clearly determined; therefore, prevention and control strategies for these protozoa should be improved, especially those for avoiding vector exposure and eliminating mosquito breeding sites.
    Haemoproteus
    Avian Malaria
    Plasmodium (life cycle)
    Plasmodium gallinaceum
    Citations (5)
    The vectors of avian malaria (Haemosporida) are an understudied component of wildlife disease ecology. Most studies of avian malaria have focused on the intermediate bird hosts. This bias leaves a significant gap in our knowledge and understanding of the insect hosts. This study investigates the diversity of malaria parasites carried by mosquitoes (Diptera, Culicidae) in the state of Mississippi. With the use of molecular techniques, haemosporidian infection rates were determined and parasites were identified. A total of 27,157 female mosquitoes representing 15 species were captured. Five of those species tested positive for malaria parasites with an overall infection rate of 4 per 1,000 mosquitoes infected. Mosquitoes were shown to harbor Plasmodium and Haemoproteus ( Parahaemoproteus) parasites. A unique lineage of parasites was discovered in Anopheles mosquitoes, potentially representing a new genus of haemosporidian parasites, reinforcing the need to continue investigating this diverse group of parasites.
    Avian Malaria
    Mosquito control
    Citations (3)