Role of MyD88 and Toll-Like Receptors 2 and 4 in the Sensing ofParachlamydia acanthamoebae
Thierry RogerNicola CassonAntony CroxattoJosé M. EntenzaMarc PusztaszeriShizuo AkiraMarlies Knaup ReymondDidier Le RoyThierry CalandraGilbert Greub
16
Citation
47
Reference
10
Related Paper
Citation Trend
Abstract:
Parachlamydia acanthamoebae is a Chlamydia-related organism whose pathogenic role in pneumonia is supported by serological and molecular clinical studies and an experimental mouse model of lung infection. Toll-like receptors (TLRs) play a seminal role in sensing microbial products and initiating innate immune responses. The aim of this study was to investigate the roles of MyD88, TLR2, and TLR4 in the interaction of Parachlamydia with macrophages. Here, we showed that Parachlamydia entered bone-marrow derived macrophages (BMDMs) in a TLR-independent manner but did not multiply intracellularly. Interestingly, compared to live bacteria, heat-inactivated Parachlamydia induced the production of substantial amounts of tumor necrosis factor alpha (TNF), interleukin-6 (IL-6), and IL-12p40 by BMDMs and of TNF and IL-6 by peritoneal macrophages as well as RAW 264.7 and J774 macrophage cell lines. Cytokine production by BMDMs, which was partially inhibited upon trypsin treatment of Parachlamydia, was dependent on MyD88, TLR4, and, to a lesser extent, TLR2. Finally, MyD88(-/-), TLR4(-/-), and TLR2(-/-) mice were as resistant as wild-type mice to lung infection following the intratracheal instillation of Parachlamydia. Thus, in contrast to Chlamydia pneumoniae, Parachlamydia acanthamoebae weakly stimulates macrophages, potentially compensating for its low replication capacity in macrophages by escaping the innate immune surveillance.Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been reported to differ structurally and functionally from enterobacterial LPS. These studies demonstrate that in contrast to protein-free enterobacterial LPS, a similarly purified preparation of P. gingivalis LPS exhibited potent Toll-like receptor 2 (TLR2), rather than TLR4, agonist activity to elicit gene expression and cytokine secretion in murine macrophages and transfectants. More importantly, TLR2 stimulation by this P. gingivalis LPS preparation resulted in differential expression of a panel of genes that are normally induced in murine macrophages by Escherichia coli LPS. These data suggest that (i) P. gingivalis LPS does not signal through TLR4 and (ii) signaling through TLR2 and through TLR4 differs quantitatively and qualitatively. Our data support the hypothesis that the shared signaling pathways elicited by TLR2 and by TLR4 agonists must diverge in order to account for the distinct patterns of inflammatory gene expression.
Cite
Citations (672)
Background: Inhibition of Toll-like receptors (TLRs) signaling has been established as a new method for the development of anti-inflammatory drugs instead of NSAIDs (non-steroid anti-inflammatory drugs). Since the immunomodulatory role of G2013 (α-L-Guluronic acid) was reported in some recent experiments, we decided to assess the effects of G2013 on the protein expression of TLR2 and TLR4, their downstream signaling cascade, and the secretion of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs). Methods: After blood sampling from 16 healthy donors, PBMCs were isolated and treated with/without lipopolysaccharide (LPS), lipopolyteichoic acid (LTA), and G2013. Flow cytometry was done for detecting the protein expression of TLR2 and TLR4. MyD88, IκB, Tollip, and NF-κB mRNA expression were assessed by realtime PCR. ELISA was performed for assessing the concentration of IL-1β and IL-6. Results: G2013 at a concentration of 25 µg/mL (high dose) significantly downregulated NF-κB, IκB and MyD88 mRNA expression and suppressed the secretion of IL-1β by PBMCs. The findings indicate that G2013 may exert its regulatory effect under normal condition via Tollip in a dose dependence pathway. Our results demonstrated that G2013 had no profound impact on the protein expression of TLR2 and TLR4. Conclusion: In conclusion, our findings point to the immunomodulatory effect of G2013 on the TLR2 and TLR4 signaling cascade and cytokine production by PBMCs. These findings could lead to an establishment of new safe anti-inflammatory drugs in the future. Keywords: Guluronic acid, G2013, TLR2, TLR4, MyD88, IκB, Tollip, NF-κB, IL-6, IL-1.
Cite
Citations (18)
Gingival fibroblasts (GFs) produce pro-inflammatory cytokines in response to stimulation with lipopolysaccharide (LPS) of Porphyromonas gingivalis, which is thought to be mediated by activation of toll-like receptors (TLR)2 and TLR4. The present study investigated the expression of interleukin (IL)-6, TLR2, and TLR4 in GFs of seven different donors upon stimulation with P. gingivalis LPS. The effects of P. gingivalis LPS were compared with those of TLR4 agonist Escherichia coli LPS and TLR2 agonist Pam3CSK4.GFs were stimulated with P. gingivalis LPS, E. coli LPS or Pam3CSK4 and the expression of IL-6, TLR2 and TLR4 was measured by qPCR. The surface expression of TLR2 and TLR4 was measured by flow cytometry.In GFs from three donors, P. gingivalis LPS and Pam3CSK4 induced a markedly lower increase in IL-6 expression than E. coli LPS. This was accompanied by significant down-regulation of the TLR2 and TLR4 expression. In GFs from another four donors, an increase in IL-6 expression upon stimulation with P. gingivalis LPS and Pam3CSK4 was similar or even higher than that induced by E. coli LPS. In GFs of these donors, all stimuli induced an up-regulation of both mRNA and protein expression of TLR2 and did not influence that of TLR4.This study suggests that P. gingivalis LPS and E. coli LPS differently regulate cytokine production in human gingival fibroblasts. Regulation of the expression level of TLR2 and TLR4 by periodontal pathogens might be an important factor controlling the inflammatory response in GFs.
Cite
Citations (62)
Abstract Toll-like receptors (TLRs) are a family of mammalian homologues of Drosophila Toll and play important roles in host defense. Two of the TLRs, TLR2 and TLR4, mediate the responsiveness to LPS. Here the gene expression of TLR2 and TLR4 was analyzed in mouse macrophages. Mouse splenic macrophages responded to an intraperitoneal injection or in vitro treatment of LPS by increased gene expression of TLR2, but not TLR4. Treatment of a mouse macrophage cell line with LPS, synthetic lipid A, IL-2, IL-15, IL-1β, IFN-γ, or TNF-α significantly increased TLR2 mRNA expression, whereas TLR4 mRNA expression remained constant. TLR2 mRNA increase in response to synthetic lipid A was severely impaired in splenic macrophages isolated from TLR4-mutated C3H/HeJ mice, suggesting that TLR4 plays an essential role in the process. Specific inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase and p38 kinase did not significantly inhibit TLR2 mRNA up-regulation by LPS. In contrast, LPS-mediated TLR2 mRNA induction was abrogated by pretreatment with a high concentration of curcumin, suggesting that NF-κB activation may be essential for the process. Taken together, our results indicate that TLR2, in contrast to TLR4, can be induced in macrophages in response to bacterial infections and may accelerate the innate immunity against pathogens.
Cite
Citations (280)
Abstract The host TLR2 and TLR4 play critical roles in defense against Escherichia coli ( E. coli ) infection. The NLRP3 inflammasome is the most thoroughly characterized and responds to numerous physically and chemically diverse stimuli. However, the underlying molecular mechanism of TLR2, TLR4 and NLRP3 in the host inflammatory response to E. coli infection remains unclear. This study aimed to explore the roles of TLR2, TLR4 and NLRP3 in regulating the inflammatory response in E. coli infection-induced mice. Our result indicated that macrophages from NLRP3-deficient mice showed significantly reduced secretion of TNF-α and IL-1β and cyclooxygenase-2 (COX-2) expression in response to stimulation with lipopolysaccharide (LPS), braun lipoprotein (BLP), or WT E. coli compared with macrophages from wild-type mice. In addition, TNF-α and IL-1β production in mouse serum after stimulation agreed with the macrophage data. Liver damage in TLR2-deficient, TLR4-deficient, and NLRP3-deficient mice significantly decreased compared to wild-type mice after stimulation with LPS, BLP, or WT E. coli . These results indicate that besides TLR2 and TLR4, NLRP3 is also plays a critical role in host inflammatory responses to defense against E. coli infection, and might provide a therapeutic target in combating disease with bacterium infection.
Escherichia coli infection
Cite
Citations (0)
Abstract Two members of the mammalian Toll-like receptor (TLR) family, TLR2 and TLR4, have been implicated as receptors mediating cellular activation in response to bacterial LPS. Through the use of mAbs raised against human TLR2 and TLR4, we have conducted studies in human cell lines and whole blood to ascertain the relative contribution of these receptors to LPS induced cytokine release. We show that the contribution of TLR2 and TLR4 to LPS-induced cellular activation correlates with the relative expression levels of these two TLRs in a given cell type. In addition, we have found that significant differences in cell stimulatory activity exist between various smooth and rough LPS types that cannot be ascribed to known LPS structural features. These results suggest that impurities in the LPS may be responsible for some of the activity and this would be in agreement with recently published results of others. Upon repurification, none of the commercial LPS preparations activate cells through TLR2, but continue to stimulate cells with comparable activity through TLR4. Our results confirm recent findings that TLR4, but not TLR2, mediates cellular activation in response to LPS derived from both Escherichia coli and Salmonella minnesota. Additionally, we show that TLR4 is the predominant signaling receptor for LPS in human whole blood.
Cite
Citations (353)
Abstract Toll-like receptor (TLR) 4 has been identified as the primary receptor for enteric LPS, whereas TLR2 has been implicated as the receptor for Gram-positive and fungal cell wall components and for bacterial, mycobacterial, and spirochetal lipoproteins. Vascular endothelial cell (EC) activation or injury by microbial cell wall components such as LPS is of critical importance in the development of sepsis and septic shock. We have previously shown that EC express predominantly TLR4, and have very little TLR2. These cells respond vigorously to LPS via TLR4, but are unresponsive to lipoproteins and other TLR2 ligands. Here we show that LPS, TNF-α, or IFN-γ induce TLR2 expression in both human dermal microvessel EC and HUVEC. Furthermore, LPS and IFN-γ act synergistically to induce TLR2 expression in EC, and LPS-induced TLR2 expression is NF-κB dependent. LPS and IFN-γ also up-regulate TLR4 mRNA expression in EC. These data indicate that TLR2 and TLR4 expression in ECs is regulated by inflammatory molecules such as LPS, TNF-α, or IFN-γ. TLR2 and TLR4 molecules may render EC responsive to TLR2 ligands and may help to explain the synergy between LPS and lipoproteins, and between LPS and IFN-γ, in inducing shock associated with Gram-negative sepsis.
Cite
Citations (448)
There are few studies on the role of innate immune response in dermatophytosis. An investigation was conducted to define the involvement of Toll-Like Receptors (TLRs) 2 and 4 in localized (LD) and disseminated (DD) dermatophytosis due to T. rubrum. Fifteen newly diagnosed patients, eight patients with LD and seven with DD, defined by involvement of at least three body segments were used in this study. Controls comprised twenty skin samples from healthy individuals undergoing plastic surgery. TLR2 and TLR4 were quantified in skin lesions by immunohistochemistry. A reduced expression of TLR4 in the lower and upper epidermis of both LD and DD patients was found compared to controls; TLR2 expression was preserved in the upper and lower epidermis of all three groups. As TLR4 signaling induces the production of inflammatory cytokines and neutrophils recruitment, its reduced expression likely contributed to the lack of resolution of the infection and the consequent chronic nature of the dermatophytosis. As TLR2 expression acts to limit the inflammatory process and preserves the epidermal structure, its preserved expression may also contribute to the persistent infection and limited inflammation that are characteristic of dermatophytic infections.
Epidermis (zoology)
Cite
Citations (32)
Pyrin domain
Escherichia coli infection
Cite
Citations (7)
Jejunum
Hymenolepis diminuta
Cite
Citations (36)