logo
    The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle
    261
    Citation
    165
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The retinoblastoma (RB) family of proteins are found in organisms as distantly related as humans, plants, and insects. These proteins play a key role in regulating advancement of the cell division cycle from the G1 to S-phases. This is achieved through negative regulation of two important positive regulators of cell cycle entry, E2F transcription factors and cyclin dependent kinases. In growth arrested cells transcriptional activity by E2Fs is repressed by RB proteins. Stimulation of cell cycle entry by growth factor signaling leads to activation of cyclin dependent kinases. They in turn phosphorylate and inactivate the RB family proteins, leading to E2F activation and additional cyclin dependent kinase activity. This propels the cell cycle irreversibly forward leading to DNA synthesis. This review will focus on the basic biochemistry and cell biology governing the regulation and activity of mammalian RB family proteins in cell cycle control.
    Keywords:
    E2F
    Cyclin A
    Retinoblastoma protein
    The E2F family of transcription factors plays a key role in regulating cell-cycle progression. Accordingly, E2F is itself tightly controlled by a series of transcriptional and posttranscriptional events. Here we provide evidence that E2F1 protein levels are regulated by the ubiquitin–proteasome-dependent degradation pathway. An analysis of E2F1 mutants identified a conserved carboxyl-terminal region, which is required for eliciting ubiquitination and protein turnover. Fusion of this E2F1 carboxyl-terminal sequence to a heterologous protein, GAL4, resulted in destabilization of GAL4. Previous studies identified an overlapping region of E2F1 that facilitates complex formation with retinoblastoma tumor suppressor protein, pRB, and we found that pRB blocks ubiquitination and stabilizes E2F1. These results suggest a new mechanism for controlling the cell-cycle regulatory activity of E2F1.
    E2F
    Retinoblastoma protein
    E2F1
    Citations (198)
    The retinoblastoma protein (pRb) acts to constrain the G1-S transition in mammalian cells. Phosphorylation of pRb in G1 inactivates its growth-inhibitory function, allowing for cell cycle progression. Although several cyclins and associated cyclin-dependent kinases (cdks) have been implicated in pRb phosphorylation, the precise mechanism by which pRb is phosphorylated in vivo remains unclear. By inhibiting selectively either cdk4/6 or cdk2, we show that endogenous D-type cyclins, acting with cdk4/6, are able to phosphorylate pRb only partially, a process that is likely to be completed by cyclin E-cdk2 complexes. Furthermore, cyclin E-cdk2 is unable to phosphorylate pRb in the absence of prior phosphorylation by cyclin D-cdk4/6 complexes. Complete phosphorylation of pRb, inactivation of E2F binding, and activation of E2F transcription occur only after sequential action of at least two distinct G1cyclin kinase complexes.
    Retinoblastoma protein
    E2F
    Cyclin A
    Cyclin E
    Cyclin D
    Cyclin-dependent kinase complex
    Cyclin A2
    Cyclin-dependent kinase 6
    Citations (1,064)
    Complexes between the retinoblastoma protein (pRb) and the transcription factor E2F-1 are thought to be important for regulating cell proliferation. We have shown previously that the E7 oncoprotein from human papillomavirus type 16, dependent upon its binding to pRb proteins, induces proliferation, disrupts differentiation, and induces apoptosis when expressed in the differentiating, or fiber, cells of the ocular lenses in transgenic mice. Mice that carry a null mutation inE2F-1 do not exhibit any defects in proliferation and differentiation in the lens. By examining the lens phenotype in mice that express E7 on an E2F-1 null background, we now show genetic evidence that E7's ability to alter the fate of fiber cells is partially dependent on E2F-1. On the other hand,E2F-1 status does not affect E7-induced proliferation in the undifferentiated lens epithelium. These data provide genetic evidence that E2F-1, while dispensible for normal fiber cell differentiation, is one mediator of E7's activity in vivo and that the requirement for E2F-1 is context dependent. These data suggest that an important role for pRb-E2F-1 complex during fiber cell differentiation is to negatively regulate cell cycle progression, thereby allowing completion of the differentiation program to occur.
    E2F
    Retinoblastoma protein
    Retinoblastoma
    Lens Fiber
    Citations (52)
    The retinoblastoma protein (Rb) family members are essential regulators of cell cycle progression, principally through regulation of the E2f transcription factors. Growing evidence indicates that abnormal cell cycle signals can participate in neuronal death. In this regard, the role of Rb (p105) itself has been controversial. Germline Rb deletion leads to massive neuronal loss, but initial reports argue that death is non-cell autonomous. To more definitively resolve this question, we generated acute murine knock-out models of Rb in terminally differentiated neurons in vitro and in vivo . Surprisingly, we report that acute inactivation of Rb in postmitotic neurons results in ectopic cell cycle protein expression and neuronal loss without concurrent induction of classical E2f-mediated apoptotic genes, such as Apaf1 or Puma. These results suggest that terminally differentiated neurons require Rb for continuous cell cycle repression and survival.
    Retinoblastoma protein
    E2F
    Retinoblastoma
    Ectopic expression
    Puma
    Genetic evidence from retinoblastoma patients and experiments describing the mechanism of cellular transformation by the DNA tumor viruses have defined a central role for the retinoblastoma protein (pRB) family of tumor suppressors in the normal regulation of the eukaryotic cell cycle. These proteins, pRB, p107, and p130, act in a cell cycle-dependent manner to regulate the activity of a number of important cellular transcription factors, such as the E2F-family, which in turn regulate expression of genes whose products are important for cell cycle progression. In addition, inhibition of E2F activity by the pRB family proteins is required for cell cycle exit after terminal differentiation or nutrient depletion. The loss of functional pRB, due to mutation of both RBI alleles, results in deregulated E2F activity and a predisposition to specific malignancies. Similarly, inac-tivation of the pRB family by the transforming proteins of the DNA tumor viruses overcomes cellular quiescence and prevents terminal differentiation by blocking the interaction of pRB, p107, and p130 with the E2F proteins, leading to cell cycle progression and, ultimately, cellular transformation. Together these two lines of evidence implicate the pRB family of negative cell cycle regulators and the E2F family of transcription factors as central components in the cell cycle machinery.
    Retinoblastoma protein
    E2F
    Retinoblastoma
    E2F1
    Citations (138)