Efficient Induction of CCR9 on T Cells Requires Coactivation of Retinoic Acid Receptors and Retinoid X Receptors (RXRs): Exaggerated T Cell Homing to the Intestine by RXR Activation with Organotins
38
Citation
60
Reference
10
Related Paper
Citation Trend
Abstract:
The active vitamin A metabolite retinoic acid (RA) imprints gut-homing specificity on lymphocytes upon activation by inducing the expression of α4β7 integrin and CCR9. RA receptor (RAR) activation is essential for their expression, whereas retinoid X receptor (RXR) activation is not essential for α4β7 expression. However, it remains unclear whether RXR activation affects the RA-dependent CCR9 expression on T cells and their gut homing. The major physiological RA, all-trans-RA, binds to RAR but not to RXR at physiological concentrations. Cell-surface CCR9 expression was often induced on a limited population of murine naive CD4(+) T cells by all-trans-RA or the RAR agonist Am80 alone upon CD3/CD28-mediated activation in vitro, but it was markedly enhanced by adding the RXR agonist PA024 or the RXR-binding environmental chemicals tributyltin and triphenyltin. Accordingly, CD4(+) T cells treated with the combination of all-trans-RA and tributyltin migrated into the small intestine upon adoptive transfer much more efficiently than did those treated with all-trans-RA alone. Furthermore, naive TCR transgenic CD4(+) T cells transferred into wild-type recipients migrated into the small intestinal lamina propria following i.p. injection of Ag, and the migration was enhanced by i.p. injection of PA024. We also show that PA024 markedly enhanced the all-trans-RA-induced CCR9 expression on naturally occurring naive-like regulatory T cells upon activation, resulting in the expression of high levels of α4β7, CCR9, and Foxp3. These results suggest that RXR activation enhances the RAR-dependent expression of CCR9 on T cells and their homing capacity to the small intestine.Keywords:
Retinoid X receptor
Homing (biology)
Abstract Studies using bioassays in normal mice and gene activation in transgenic reporter mice have demonstrated peaks of retinoic acid receptor (RAR) signaling in the brachial and lumbar regions of the spinal cord. Recently, Solomin et al. (Solomin et al. [ 1998 ] Nature 395:398–402) detected a retinoid X receptor (RXR) signal in the same region of the developing spinal cord at a slightly later stage than the RAR signal. This finding raises the question of which retinoid ligands underlie RAR and RXR signaling in this part of the embryo. Quantitative measurements of regional differences in retinoid profiles have not been reported previously due to limitation in the sensitivity and specificity of available retinoid detection methods. Here, by using a recently developed ultrasensitive HPLC technique (Sakhi et al. [ 1998 ] J. Chromatogr. A 828:451–460), we address this question in an attempt to identify definitively the endogenous retinoids present in different regions of the spinal cord at the stages when regional differences in RAR and RXR signaling have been reported. We find a bimodal distribution of all‐trans retinoic acid (at‐RA), the ligand for RARs, and relate this to the expression of several retinoid‐synthesizing enzymes. However, we do not detect 9‐cis‐retinoic acid (9‐cis‐RA), the putative RXR ligand, in any region of the spinal cord unless retinoid levels are massively increased experimentally by gavage feeding pregnant mice with teratogenic doses of at‐RA. This study provides for the first time quantitative profiles of endogenous retinoids along the axis of the developing spinal cord, thereby establishing a foundation for more definitive studies of retinoid function in the future. It sets definite limits on how much 9‐cis‐RA potentially is present and demonstrates that at‐RA predominates over 9‐cis‐RA by at least 30‐ to 180‐fold in different spinal cord regions. © 2001 Wiley‐Liss, Inc.
Retinoid X receptor
Tretinoin
Cite
Citations (51)
Retinoic acid receptor (RAR) and retinoid X receptor (RXR) form heterodimers and regulate retinoid-mediated gene expression. We studied binding of RXR- and RAR-selective ligands to the RXR-RAR heterodimer and subsequent transcription. In limited proteolysis analyses, both RXR and RAR in the heterodimer bound their respective ligands and underwent a conformational change in the presence of a retinoic acid-responsive element. In reporter analyses, the RAR ligand (but not the RXR ligand), when added singly, activated transcription, but coaddition of the two ligands led to synergistic activation of transcription. This activation required the AF-2 domain of both RXR and RAR. Genomic footprinting analysis was performed with P19 embryonal carcinoma cells, in which transcription of the RARbeta gene is induced upon retinoid addition. Paralleling the reporter activation data, only the RAR ligand induced in vivo occupancy of the RARbeta2 promoter when added singly. However, at suboptimal concentrations of RAR ligand, coaddition of the RXR ligand increased the stability of promoter occupancy. Thus, liganded RXR and RAR both participate in transcription. Finally, when these ligands were tested for teratogenic effects on zebra fish and Xenopus embryos, we found that coadministration of the RXR and RAR ligands caused more severe abnormalities in these embryos than either ligand alone, providing biological support for the synergistic action of the two ligands.
Retinoid X receptor
Response element
Cite
Citations (167)
Gene targeting in embryonic stem (ES) cells is a powerful technique for the modification of the mouse genome (1–3). Regarding the retinoid receptors, a number of laboratories have reported the phenotype of mice in which a given retinoic acid receptor (RAR) or retinoid X receptor (RXR) has been inactivated by this technique (14–12). In addition, a number of cellular retinoid-binding protein-null mice have also been generated (13–15).
Retinoid X receptor
Cite
Citations (1)
Retinoid X receptor
Cite
Citations (28)
Dysregulation of retinoid signaling pathways appears to be an early event in the pathogenesis of small cell lung cancer (SCLC). We evaluated the activity of 9-cis-retinoic acid (9cRA), a pan- receptor agonist, and two synthetic retinoids, TTNPB and LG100153, which are RAR- and RXR- selective, respectively, against a panel of SCLC cell lines. LG100153 was the most potent agent with an IC50 < 1.0 microM in three cell lines. TTNPB had an IC50 < 1.0 microM in two lines, and 9cRA an IC50 < 1.0 microM in only one. By fluorescent microscopy, LG100153, TTNPB and 9cRA also induced morphologic evidence of apoptosis in three, two and one cell lines, respectively. Although the expression of RARs and RXRs varied widely between cell lines, there was no clear correlation between the level or pattern of receptor expression and retinoid activity. These data suggest that novel retinoids, especially RXR-selective agents, deserve further evaluation in the treatment of SCLC.
Retinoid X receptor
Cite
Citations (9)
Terminal differentiation of epidermal keratinocytes is inhibited by 1 microM retinoic acid, a concentration which induces differentiation in a number of cell types, including F9 teratocarcinoma cells. The molecular basis for these opposing retinoid responses is unknown, although retinoic acid receptors (RARs) and retinoid X receptors (RXRs) have been detected in both cell types. When F9 cells are stably transfected with a truncated RAR alpha lacking the E/F domain necessary for ligand binding and RAR/RXR dimerization, action at retinoid response elements is suppressed and cells produce a retinoic acid-resistant phenotype; i.e., they are blocked in differentiation (A. S. Espeseth, S. P. Murphy, and E. Linney, Genes Dev. 3:1647-1656, 1989). If retinoid receptors influence epidermal differentiation only in a negative fashion, then suppression of transactivation at retinoid response elements would be expected to enhance, rather than block, keratinocyte differentiation. In this study, we show that surprisingly, even though constitutive expression of an analogous truncated RAR gamma in keratinocytes specifically suppressed transactivation at retinoid response elements, keratinocytes were blocked, rather than enhanced, in their ability to undergo morphological and biochemical features of differentiation. These findings demonstrate a direct and hitherto unrecognized role for RARs and RXRs in positively as well as negatively regulating epidermal differentiation. Additionally, our studies extend those of Espeseth et al. (Genes Dev. 3:1647-1656, 1989), indicating a novel RAR function independent of the E/F domain.
Retinoid X receptor
Cite
Citations (23)
Retinoids regulate a broad range of biological processes through two subfamilies of nuclear retinoid receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Recently, we reported a novel type of retinoic acid antagonist (SR11335) and showed that this compound can inhibit retinoic acid (RA)-induced activation of a human immunodeficiency virus type 1 (HIV-1) promoter construct that contains a special RA response element (RARE). We have now further characterized the antagonism mediated by SR11335 and of newly synthesized structurally related compounds. Two compounds, SR11330 and SR11334, which are poor transactivators, also showed antagonist activities, inhibiting all-trans-RA (tRA) and 9-cis-RA. The retinoids inhibited transcriptional activation of RAR/RXR heterodimers effectively, while inhibition of RXR homodimers was less efficient. Inhibition was observed on several RAREs, including the TREpal, βRARE, apoAI-RARE, and CRBPI-RARE. In addition, the antagonists inhibited tRA-induced differentiation of HL-60 cells. The antagonist did not interfere with DNA binding of the receptors. In limited proteolytic digestion assays, SR11335 induced resistance of the receptors to proteolysis, but the pattern of the degradation was not altered from that induced by tRA, suggesting that these antagonists induce their biological effects by competing with agonists for binding to RARs, thereby preventing the induction of conformational changes of the receptors necessary for transcriptional activation. Retinoids regulate a broad range of biological processes through two subfamilies of nuclear retinoid receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Recently, we reported a novel type of retinoic acid antagonist (SR11335) and showed that this compound can inhibit retinoic acid (RA)-induced activation of a human immunodeficiency virus type 1 (HIV-1) promoter construct that contains a special RA response element (RARE). We have now further characterized the antagonism mediated by SR11335 and of newly synthesized structurally related compounds. Two compounds, SR11330 and SR11334, which are poor transactivators, also showed antagonist activities, inhibiting all-trans-RA (tRA) and 9-cis-RA. The retinoids inhibited transcriptional activation of RAR/RXR heterodimers effectively, while inhibition of RXR homodimers was less efficient. Inhibition was observed on several RAREs, including the TREpal, βRARE, apoAI-RARE, and CRBPI-RARE. In addition, the antagonists inhibited tRA-induced differentiation of HL-60 cells. The antagonist did not interfere with DNA binding of the receptors. In limited proteolytic digestion assays, SR11335 induced resistance of the receptors to proteolysis, but the pattern of the degradation was not altered from that induced by tRA, suggesting that these antagonists induce their biological effects by competing with agonists for binding to RARs, thereby preventing the induction of conformational changes of the receptors necessary for transcriptional activation.
Retinoid X receptor
Cite
Citations (25)
Retinoid X receptor
Thyroid hormone receptor
Cite
Citations (37)
Retinoid X receptor
Cite
Citations (584)
Retinoid-X receptor (RXR)- and retinoic acid receptor (RAR)-mediated signaling is induced by retinoic acids (RA), which are involved in the regulation of skin permeability, differentiation and immune response. Dysregulation of retinoid signaling is present in various skin disorders. Topically and systemically administered synthetic RAR or RXR agonists might influence retinoid-mediated signaling in the skin of RARE reporter animals and gene expression analysis for retinoid, skin homeostasis and skin inflammation marker genes and local retinoid concentrations. Mice were treated orally and topically with synthetic ligands and bioimaging, QRT-PCR and retinoid analysis were performed. Topical application of the synthetic RAR ligand AM580 significantly enhanced retinoid signaling in skin while topical application of the RXR ligand LG268 did not influence retinoic acid receptor re-sponse elements (RARE)-mediated signaling. Systemic treatments with LG268 decreased the expression of genes involved in skin homeostasis, RA synthesis and skin RA concentrations, while it increased various markers for skin inflammation and RA degradation, which corresponds to decreased skin RARE signaling. We conclude from these observations that increased systemic concentrations of an RXR -ligand may be one reason for reduced retinoid signaling, -reduced all-<i>trans</i> RA levels in the skin, reduced epidermal homeostasis and increased skin inflammation marker expression with potential relevance for various skin disorders, like atopic dermatitis.
Retinoid X receptor
Cite
Citations (15)